“Towards foveated rendering for gaze-tracked virtual reality”
Conference:
Type(s):
Title:
- Towards foveated rendering for gaze-tracked virtual reality
Session/Category Title: All About Seeing
Presenter(s)/Author(s):
Abstract:
Foveated rendering synthesizes images with progressively less detail outside the eye fixation region, potentially unlocking significant speedups for wide field-of-view displays, such as head mounted displays, where target framerate and resolution is increasing faster than the performance of traditional real-time renderers.To study and improve potential gains, we designed a foveated rendering user study to evaluate the perceptual abilities of human peripheral vision when viewing today’s displays. We determined that filtering peripheral regions reduces contrast, inducing a sense of tunnel vision. When applying a postprocess contrast enhancement, subjects tolerated up to 2× larger blur radius before detecting differences from a non-foveated ground truth. After verifying these insights on both desktop and head mounted displays augmented with high-speed gaze-tracking, we designed a perceptual target image to strive for when engineering a production foveated renderer.Given our perceptual target, we designed a practical foveated rendering system that reduces number of shades by up to 70% and allows coarsened shading up to 30° closer to the fovea than Guenter et al. [2012] without introducing perceivable aliasing or blur. We filter both pre- and post-shading to address aliasing from undersampling in the periphery, introduce a novel multiresolution- and saccade-aware temporal antialising algorithm, and use contrast enhancement to help recover peripheral details that are resolvable by our eye but degraded by filtering.We validate our system by performing another user study. Frequency analysis shows our system closely matches our perceptual target. Measurements of temporal stability show we obtain quality similar to temporally filtered non-foveated renderings.
References:
1. Baker, D., 2016. Object space lighting – following film rendering 2 decades later in real time, 03. Game Developers Conference Talk.
2. Banks, M. S., Sekuler, A. B., and Anderson, S. J. 1991. Peripheral spatial vision: limits imposed by optics, photoreceptors, and receptor pooling. Journal of the Optical Society of America A 8, 11, 1775–1787. Cross Ref
3. Banks, M. S., Gepshtein, S., and Landy, M. S. 2004. Why is spatial stereoresolution so low? The Journal of Neuroscience 24, 9, 2077–2089. Cross Ref
4. Clarberg, P., Toth, R., Hasselgren, J., Nilsson, J., and Akenine-Möller, T. 2014. Amfs: adaptive multi-frequency shading for future graphics processors. ACM Transactions on Graphics 33, 4, 141:1–141:12.
5. Cowey, A., and Rolls, E. T. 1974. Human cortical magnification factor and its relation to visual acuity. Experimental Brain Research 21, 5, 447–454. Cross Ref
6. Curcio, C. A., and Allen, K. A. 1990. Topography of ganglion cells in human retina. Journal of Comparative Neurology 300, 1, 5–25. Cross Ref
7. Curcio, C. A., Sloan, K. R., Kalina, R. E., and Hendrickson, A. E. 1990. Human photoreceptor topography. Journal of Comparative Neurology 292, 4, 497–523. Cross Ref
8. Ferree, C. E., Rand, G. G., and Hardy, C. C. 1931. Refraction for the peripheral field of vision. Archives of Ophthalmology 5, 5, 717–731. Cross Ref
9. Green, C. 2007. Improved alpha-tested magnification for vector textures and special effects. In ACM SIGGRAPH Courses, SIGGRAPH, 9–18.
10. Grundland, M., Vohra, R., Williams, G. P., and Dodgson, N. A. 2006. Cross Dissolve Without Cross Fade: Preserving Contrast, Color and Salience in Image Compositing. Computer Graphics Forum 25, 3, 577–586. Cross Ref
11. Guenter, B., Finch, M., Drucker, S., Tan, D., and Snyder, J. 2012. Foveated 3D graphics. ACM Transactions on Graphics 31, 6, 164:1–164:10.
12. Hansen, T., Pracejus, L., and Gegenfurtner, K. R. 2009. Color perception in the intermediate periphery of the visual field. Journal of Vision 9, 4, 26:1–26:12. Cross Ref
13. He, Y., Gu, Y., and Fatahalian, K. 2014. Extending the graphics pipeline with adaptive, multi-rate shading. ACM Transactions on Graphics 33, 4, 142:1–142:12.
14. Hill, S., McAuley, S., Burley, B., Chan, D., Fascione, L., Iwanicki, M., Hoffman, N., Jakob, W., Neubelt, D., Pesce, A., and Pettineo, M. 2015. Physically based shading in theory and practice. In ACM SIGGRAPH Courses, SIGGRAPH, 22:1–22:8.
15. Hillesland, K. E., and Yang, J. C. 2016. Texel Shading. In EG 2016 – Short Papers, The Eurographics Association, T. Bashford-Rogers and L. P. Santos, Eds.
16. Jimenez, J., Echevarria, J. I., Sousa, T., and Gutierrez, D. 2012. SMAA: Enhanced morphological antialiasing. Computer Graphics Forum (Proc. EUROGRAPHICS 2012) 31, 2.
17. Kaplanyan, A., Hill, S., Patney, A., and Lefohn, A. 2016. Filtering distributions of normals for shading antialiasing. In Proceedings of the Symposium on High-Performance Graphics.
18. Karis, B. 2014. High-quality temporal supersampling. In Advances in Real-Time Rendering in Games, SIGGRAPH Courses.
19. Kelly, D. H., and Savoie, R. E. 1973. A study of sine-wave contrast sensitivity by two psychophysical methods. Perception & Psychophysics 14, 2, 313–318. Cross Ref
20. Kelly, D. H. 1984. Retinal inhomogeneity. i. spatiotemporal contrast sensitivity. Journal of the Optical Society of America A 1, 1, 107–113. Cross Ref
21. Kim, M. H., Ritschel, T., and Kautz, J. 2011. Edge-aware color appearance. ACM Transactions on Graphics 30, 2, 13:1–13:9.
22. Koenderink, J. J., Bouman, M. A., Bueno de Mesquita, A. E., and Slappendel, S. 1978. Perimetry of contrast detection thresholds of moving spatial sine patterns. II. The far peripheral visual field (eccentricity 0 degrees-50 degrees). Journal of the Optical Society of America A 68, 6, 850–854. Cross Ref
23. Koenderink, J. J., Bouman, M. A., Bueno de Mesquita, A. E., and Slappendel, S. 1978. Perimetry of contrast detection thresholds of moving spatial sine wave patterns. I. The near peripheral visual field (eccentricity 0 degrees-8 degrees). Journal of the Optical Society of America A 68, 6, 845–849. Cross Ref
24. Koenderink, J. J., Bouman, M. A., Bueno de Mesquita, A. E., and Slappendel, S. 1978. Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target extent as a sensitivity controlling parameter. Journal of the Optical Society of America A 68, 6, 854–860. Cross Ref
25. Lauritzen, A., Salvi, M., and Lefohn, A. 2011. Sample distribution shadow maps. In Symposium on Interactive 3D Graphics and Games, 97–102.
26. Levi, D. M., Klein, S. A., and Aitsebaomo, P. 1985. Vernier acuity, crowding and cortical magnification. Vision Research 25, 7, 963–977. Cross Ref
27. Levitt, H. 1971. Transformed up-down methods in psychoacoustics. The Journal of the Acoustical society of America 49, 2B, 467–477. Cross Ref
28. McKee, S. P., and Nakayama, K. 1984. The detection of motion in the peripheral visual field. Vision Research 24, 1, 25–32. Cross Ref
29. Mäkelä, P., Näsänen, R., Rovamo, J., and Melmoth, D. 2001. Identification of facial images in peripheral vision. Vision Research 41, 5, 599–610. Cross Ref
30. Navarro, R., Artal, P., and Williams, D. R. 1993. Modulation transfer of the human eye as a function of retinal eccentricity. Journal of the Optical Society of America A 10, 2, 201–212. Cross Ref
31. Noorlander, C., Koenderink, J. J., Olden, R. J. D., and Edens, B. W. 1983. Sensitivity to spatiotemporal colour contrast in the peripheral visual field. Vision Research 23, 1, 1–11. Cross Ref
32. Olano, M., and Baker, D. 2010. Lean mapping. In Symposium on Interactive 3D Graphics and Games, 181–188.
33. Öztireli, A. C., and Gross, M. 2015. Perceptually based downscaling of images. ACM Transactions on Graphics 34, 4, 77:1–77:10.
34. Patney, A., Kim, J., Salvi, M., Kaplanyan, A., Wyman, C., Benty, N., Lefohn, A., and Luebke, D. 2016. Perceptually-based foveated virtual reality. In ACM SIGGRAPH 2016 Emerging Technologies, ACM, New York, NY, USA, SIGGRAPH ’16, 17:1–17:2.
35. Pharr, M., and Humphreys, G. 2010. Physically Based Rendering, Second Edition: From Theory to Implementation, 2nd ed. Morgan Kaufmann Publishers, Inc.
36. Rosén, R. 2013. Peripheral Vision: Adaptive Optics and Psychophysics. PhD thesis, Royal Institute of Technology, Stockholm, Sweden.
37. Rovamo, J., and Virsu, V. 1979. An estimation and application of the human cortical magnification factor. Experimental Brain Research 37, 3, 495–510. Cross Ref
38. Rovamo, J., Virsu, V., Laurinen, P., and Hyvärinen, L. 1982. Resolution of gratings oriented along and across meridians in peripheral vision. Investigative Ophthalmology & Visual Science 23, 5, 666–670.
39. Salvi, M., and Vaidyanathan, K. 2014. Multi-layer alpha blending. In Proceedings of the 18th meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 151–158.
40. Schütt, H. H., Harmeling, S., Macke, J. H., and Wichmann, F. A. 2016. Painfree and accurate bayesian estimation of psychometric functions for (potentially) overdispersed data. Vision Research 122, 105 — 123. Cross Ref
41. Solomon, S. G., Lee, B. B., White, A. J., Ruttiger, L., and Martin, P. R. 2005. Chromatic organization of ganglion cell receptive fields in the peripheral retina. Journal of Neuroscience 25, 18, 4527–4539. Cross Ref
42. Strasburger, H., Rentschler, I., and Harvey, L. O. 1994. Cortical magnification theory fails to predict visual recognition. European Journal of Neuroscience 6, 10, 1583–1588. Cross Ref
43. Strasburger, H., Rentschler, I., and Jüttner, M. 2011. Peripheral vision and pattern recognition: A review. Journal of Vision 11, 5, 13:1–13:82. Cross Ref
44. Swafford, N. T., Iglesias-Guitian, J. A., Koniaris, C., Moon, B., Cosker, D., and Mitchell, K. 2016. User, metric, and computational evaluation of foveated rendering methods. In Proceedings of the ACM Symposium on Applied Perception, ACM, New York, NY, USA, SAP ’16, 7–14.
45. Thibos, L. N., Cheney, F. E., and Walsh, D. J. 1987. Retinal limits to the detection and resolution of gratings. Journal of the Optical Society of America A 4, 8, 1524–1529. Cross Ref
46. Thibos, L., Walsh, D., and Cheney, F. 1987. Vision beyond the resolution limit: Aliasing in the periphery. Vision Research 27, 12, 2193–2197. Cross Ref
47. Thibos, L. N., Still, D. L., and Bradley, A. 1996. Characterization of spatial aliasing and contrast sensitivity in peripheral vision. Vision Research 36, 2, 249–258. Cross Ref
48. Thibos, L. N. 1987. Calculation of the influence of lateral chromatic aberration on image quality across the visual field. Journal of the Optical Society of America A 4, 8, 1673–1680. Cross Ref
49. Toth, R., Nilsson, J., and Akenine-Moller, T. 2016. Comparison of projection methods for rendering virtual reality. In Proceedings of the Symposium on High-Performance Graphics.
50. Vaidyanathan, K., Salvi, M., Toth, R., Foley, T., Akenine-Moller, T., Nilsson, J., Munkberg, J., Hasselgren, J., Sugihara, M., Clarberg, P., Janczak, T., and Lefohn, A. 2014. Coarse pixel shading. In Proceedings of the Symposium on High-Performance Graphics.
51. Wandell, B. A. 1995. Foundations of Vision. Sinauer Associates, Inc.
52. Wang, Y.-Z., Thibos, L. N., and Bradley, A. 1996. Undersampling produces non-veridical motion perception, but not necessarily motion reversal, in peripheral vision. Vision Research 36, 12, 1737–1744. Cross Ref
53. Wang, Y.-Z., Bradley, A., and Thibos, L. N. 1997. Aliased frequencies enable the discrimination of compound gratings in peripheral vision. Vision Research 37, 3, 283–290. Cross Ref
54. Wichmann, F. A., and Hill, N. J. 2001. The psychometric function: I. fitting, sampling, and goodness of fit. Perception & Psychophysics 63, 8, 1293–1313. Cross Ref
55. Wichmann, F. A., and Hill, N. J. 2001. The psychometric function: Ii. bootstrap-based confidence intervals and sampling. Perception & Psychophysics 63, 8, 1314–1329. Cross Ref
56. Williams, D. R., Artal, P., Navarro, R., McMahon, M. J., and Brainard, D. H. 1996. Off-axis optical quality and retinal sampling in the human eye. Vision Research 36, 8, 1103–1114. Cross Ref
57. Williams, L. 1983. Pyramidal parametrics. SIGGRAPH Comput. Graph. 17, 3, 1–11.
58. Yang, L., Nehab, D., Sander, P. V., Sitthi-amorn, P., Lawrence, J., and Hoppe, H. 2009. Amortized supersampling. In ACM SIGGRAPH Asia 2009 Papers, ACM, New York, NY, USA, SIGGRAPH Asia ’09, 135:1–135:12.


