“TIP-Editor: An Accurate 3D Editor Following Both Text-prompts and Image-prompts”
Conference:
Type(s):
Title:
- TIP-Editor: An Accurate 3D Editor Following Both Text-prompts and Image-prompts
Presenter(s)/Author(s):
Abstract:
We propose a 3D scene editing framework, TIP-Editor, that accepts both text and image prompts. With the image prompt, users can conveniently specify the detailed appearance/style of the target content in complement to the text description, enabling accurate control on the appearance.
References:
[1]
Omri Avrahami, Kfir Aberman, Ohad Fried, Daniel Cohen-Or, and Dani Lischinski. 2023. Break-a-scene: Extracting multiple concepts from a single image. In SIGGRAPH Asia 2023 Conference Papers. 1–12.
[2]
Omri Avrahami, Dani Lischinski, and Ohad Fried. 2022. Blended diffusion for text-driven editing of natural images. In CVPR 2022. 18208–18218.
[3]
Chong Bao, Yinda Zhang, Bangbang Yang, Tianxing Fan, Zesong Yang, Hujun Bao, Guofeng Zhang, and Zhaopeng Cui. 2023. SINE: Semantic-driven image-based nerf editing with prior-guided editing field. In CVPR 2023. 20919–20929.
[4]
Tim Brooks, Aleksander Holynski, and Alexei A Efros. 2022. InstructPix2Pix: Learning to follow image editing instructions. arXiv preprint arXiv:2211.09800 (2022).
[5]
de Charette Raoul Cao, Anh-Quan. 2023. SceneRF: Self-supervised monocular 3D scene reconstruction with radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 9387–9398.
[6]
Jiazhong Cen, Zanwei Zhou, Jiemin Fang, Chen Yang, Wei Shen, Lingxi Xie, Xiaopeng Zhang, and Qi Tian. 2023. Segment Anything in 3D with NeRFs. In NeurIPS.
[7]
Jun-Kun Chen, Jipeng Lyu, and Yu-Xiong Wang. 2023c. Neuraleditor: Editing neural radiance fields via manipulating point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12439–12448.
[8]
Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. 2023a. Fantasia3D: Disentangling Geometry and Appearance for High-quality Text-to-3D Content Creation. arXiv preprint arXiv:2303.13873 (2023).
[9]
Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng Yang, Yikai Wang, Zhongang Cai, Lei Yang, Huaping Liu, and Guosheng Lin. 2023b. GaussianEditor: Swift and Controllable 3D Editing with Gaussian Splatting. arXiv preprint arXiv:2311.14521 (2023).
[10]
Zilong Chen, Feng Wang, and Huaping Liu. 2023d. Text-to-3d using gaussian splatting. arXiv preprint arXiv:2309.16585 (2023).
[11]
Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. 2022. DiffEdit: Diffusion-based semantic image editing with mask guidance. arXiv preprint arXiv:2210.11427 (2022).
[12]
Dale Decatur, Itai Lang, Kfir Aberman, and Rana Hanocka. 2023. 3D Paintbrush: Local Stylization of 3D Shapes with Cascaded Score Distillation. arXiv preprint arXiv:2311.09571 (2023).
[13]
Congyue Deng, Chiyu Jiang, Charles R Qi, Xinchen Yan, Yin Zhou, Leonidas Guibas, Dragomir Anguelov, et al. 2022. NeRDi: Single-View NeRF Synthesis with Language-Guided Diffusion as General Image Priors. arXiv preprint arXiv:2212.03267 (2022).
[14]
Jiemin Fang, Junjie Wang, Xiaopeng Zhang, Lingxi Xie, and Qi Tian. 2023. GaussianEditor: Editing 3D gaussians delicately with text instructions. arXiv preprint arXiv:2311.16037 (2023).
[15]
Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or. 2022. An image is worth one word: Personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618 (2022).
[16]
Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo Kanazawa. 2023. Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions. arXiv preprint arXiv:2303.12789 (2023).
[17]
Runze He, Shaofei Huang, Xuecheng Nie, Tianrui Hui, Luoqi Liu, Jiao Dai, Jizhong Han, Guanbin Li, and Si Liu. 2023. Customize your NeRF: Adaptive Source Driven 3D Scene Editing via Local-Global Iterative Training. arXiv preprint arXiv:2312.01663 (2023).
[18]
Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. 2022. Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626 (2022).
[19]
Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. LoRA: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021).
[20]
Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. 2022. Imagic: Text-based real image editing with diffusion models. arXiv preprint arXiv:2210.09276 (2022).
[21]
Bernhard Kerbl, Georgios Kopanas, Thomas Leimk?hler, and George Drettakis. 2023. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions on Graphics 42, 4 (2023).
[22]
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. 2023b. Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 4015–4026.
[23]
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Doll?r, and Ross Girshick. 2023a. Segment Anything. arXiv:2304.02643 (2023).
[24]
Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. 2022. Decomposing NeRF for editing via feature field distillation. arXiv preprint arXiv:2205.15585 (2022).
[25]
Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. 2023. Multi-concept customization of text-to-image diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1931–1941.
[26]
Jiaxin Li, Zijian Feng, Qi She, Henghui Ding, Changhu Wang, and Gim Hee Lee. 2021. Mine: Towards continuous depth mpi with nerf for novel view synthesis. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 12578–12588.
[27]
Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 2023. BLIP-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597 (2023).
[28]
Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. 2022. Magic3D: High-Resolution Text-to-3D Content Creation. arXiv preprint arXiv:2211.10440 (2022).
[29]
Hao-Kang Liu, I Shen, Bing-Yu Chen, et al. 2022. NeRF-In: Free-form NeRF inpainting with RGB-D priors. arXiv preprint arXiv:2206.04901 (2022).
[30]
Xiangyue Liu, Han Xue, Kunming Luo, Ping Tan, and Li Yi. 2024. GenN2N: Generative NeRF2NeRF Translation. arXiv preprint arXiv:2404.02788 (2024).
[31]
Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, and Andrea Vedaldi. 2023. Realfusion: 360deg reconstruction of any object from a single image. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 8446–8455.
[32]
Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. 2021. Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073 (2021).
[33]
Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. 2021. NeRF: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 65, 1 (2021), 99–106.
[34]
Thomas M?ller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant neural graphics primitives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG) 41, 4 (2022), 1–15.
[35]
Maxime Oquab, Timoth?e Darcet, Th?o Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. 2023. DINOv2: Learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023).
[36]
Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. 2022. DreamFusion: Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988 (2022).
[37]
Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren, Aliaksandr Siarohin, Bing Li, Hsin-Ying Lee, Ivan Skorokhodov, Peter Wonka, Sergey Tulyakov, et al. 2023. Magic123: One image to high-quality 3D object generation using both 2D and 3D diffusion priors. arXiv preprint arXiv:2306.17843 (2023).
[38]
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning transferable visual models from natural language supervision. In ICML 2021. 8748–8763.
[39]
Amit Raj, Srinivas Kaza, Ben Poole, Michael Niemeyer, Nataniel Ruiz, Ben Mildenhall, Shiran Zada, Kfir Aberman, Michael Rubinstein, Jonathan Barron, et al. 2023. Dream-Booth3D: Subject-Driven Text-to-3D Generation. arXiv preprint arXiv:2303.13508 (2023).
[40]
Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022. Hierarchical text-conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125 (2022).
[41]
Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or. 2023. Texture: Text-guided texturing of 3D shapes. arXiv preprint arXiv:2302.01721 (2023).
[42]
Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bj?rn Ommer. 2022. High-resolution image synthesis with latent diffusion models. In CVPR 2022. 10684–10695.
[43]
Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. 2022. DreamBooth: Fine tuning text-to-image diffusion models for subject-driven generation. arXiv preprint arXiv:2208.12242 (2022).
[44]
Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. 2022. Photorealistic text-to-image diffusion models with deep language understanding. NeurIPS 2022 35 (2022), 36479–36494.
[45]
Johannes Lutz Sch?nberger and Jan-Michael Frahm. 2016. Structure-from-Motion Revisited. In Conference on Computer Vision and Pattern Recognition (CVPR).
[46]
Etai Sella, Gal Fiebelman, Peter Hedman, and Hadar Averbuch-Elor. 2023. Vox-E: Text-guided Voxel Editing of 3D Objects. arXiv preprint arXiv:2303.12048 (2023).
[47]
Jiaxiang Tang, Xiaokang Chen, Jingbo Wang, and Gang Zeng. 2022. Compressible-composable nerf via rank-residual decomposition. Advances in Neural Information Processing Systems 35 (2022), 14798–14809.
[48]
Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi, Lizhuang Ma, and Dong Chen. 2023. Make-it-3D: High-fidelity 3D creation from a single image with diffusion prior. arXiv preprint arXiv:2303.14184 (2023).
[49]
Can Wang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao. 2022. CLIP-NeRF: Text-and-image driven manipulation of neural radiance fields. In CVPR 2022. 3835–3844.
[50]
Can Wang, Mingming He, Menglei Chai, Dongdong Chen, and Jing Liao. 2023a. Mesh-Guided Neural Implicit Field Editing. arXiv preprint arXiv:2312.02157 (2023).
[51]
Can Wang, Ruixiang Jiang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao. 2023b. NeRF-Art: Text-driven neural radiance fields stylization. IEEE Transactions on Visualization and Computer Graphics (2023).
[52]
Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. 2023c. ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation. arXiv preprint arXiv:2305.16213 (2023).
[53]
Tong Wu, Jia-Mu Sun, Yu-Kun Lai, and Lin Gao. 2023. De-nerf: Decoupled neural radiance fields for view-consistent appearance editing and high-frequency environmental relighting. In ACM SIGGRAPH 2023 conference proceedings. 1–11.
[54]
Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-Geoffroy, Kalyan Sunkavalli, and Hao Su. 2021. Neutex: Neural texture mapping for volumetric neural rendering. In CVPR 2021. 7119–7128.
[55]
Guangxuan Xiao, Tianwei Yin, William T Freeman, Fr?do Durand, and Song Han. 2023. Fastcomposer: Tuning-free multi-subject image generation with localized attention. arXiv preprint arXiv:2305.10431 (2023).
[56]
Tianhan Xu and Tatsuya Harada. 2022. Deforming radiance fields with cages. In Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIII. Springer, 159–175.
[57]
Bangbang Yang, Chong Bao, Junyi Zeng, Hujun Bao, Yinda Zhang, Zhaopeng Cui, and Guofeng Zhang. 2022. NeuMesh: Learning disentangled neural mesh-based implicit field for geometry and texture editing. In ECCV 2022. Springer, 597–614.
[58]
Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian, and Xinggang Wang. 2023. Gaussiandreamer: Fast generation from text to 3d gaussian splatting with point cloud priors. arXiv preprint arXiv:2310.08529 (2023).
[59]
Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. 2021. pixelnerf: Neural radiance fields from one or few images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4578–4587.
[60]
Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. 2022. NeRF-editing: geometry editing of neural radiance fields. In CVPR 2022. 18353–18364.
[61]
Jingyu Zhuang, Chen Wang, Liang Lin, Lingjie Liu, and Guanbin Li. 2023. DreamEditor: Text-driven 3d scene editing with neural fields. In SIGGRAPH Asia 2023 Conference Papers. 1–10.