“The shape space of discrete orthogonal geodesic nets” – ACM SIGGRAPH HISTORY ARCHIVES

“The shape space of discrete orthogonal geodesic nets”

  • 2018 SA Technical Papers_Rabinovich_The shape space of discrete orthogonal geodesic nets

Conference:


Type(s):


Title:

    The shape space of discrete orthogonal geodesic nets

Session/Category Title:   Nets, cages and meshes


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Discrete orthogonal geodesic nets (DOGs) are a quad mesh analogue of developable surfaces. In this work we study continuous deformations on these discrete objects. Our main theoretical contribution is the characterization of the shape space of DOGs for a given net connectivity. We show that generally, this space is locally a manifold of a fixed dimension, apart from a set of singularities, implying that DOGs are continuously deformable. Smooth flows can be constructed by a smooth choice of vectors on the manifold’s tangent spaces, selected to minimize a desired objective function under a given metric. We show how to compute such vectors by solving a linear system, and we use our findings to devise a geometrically meaningful way to handle singular points. We base our shape space metric on a novel DOG Laplacian operator, which is proved to converge under sampling of an analytical orthogonal geodesic net. We further show how to extend the shape space of DOGs by supporting creases and curved folds and apply the developed tools in an editing system for developable surfaces that supports arbitrary bending, stretching, cutting, (curved) folds, as well as smoothing and subdivision operations.

References:


    1. M. Alexa and M. Wardetzky. 2011. Discrete Laplacians on general polygonal meshes. ACM Trans. Graph. 30, 4 (2011). Google ScholarDigital Library
    2. A. I. Bobenko and P. Schröder. 2005. Discrete Willmore Flow. In Proc. Symposium on Geometry Processing. http://dl.acm.org/citation.cfm?id=1281920.1281937 Google ScholarDigital Library
    3. A. I. Bobenko and Y. B. Suris. 2008. Discrete differential geometry: integrable structure. Graduate studies in mathematics, Vol. 98. American Mathematical Society, Providence (R.I.).Google Scholar
    4. S. Bouaziz, M. Deuss, Y. Schwartzburg, T. Weise, and M. Pauly. 2012. Shape-up: Shaping discrete geometry with projections. Comput. Graph. Forum 31, 5 (2012), 1657–1667. Google ScholarDigital Library
    5. S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33, 4 (2014). Google ScholarDigital Library
    6. R. Burgoon, Z. J. Wood, and E. Grinspun. 2006. Discrete Shells Origami. In Computers and Their Applications.Google Scholar
    7. K. Crane, U. Pinkall, and P. Schröder. 2013. Robust fairing via conformal curvature flow. ACM Trans. Graph. 32, 4 (2013). Google ScholarDigital Library
    8. T. A. Davis. 2011. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011), 8. Google ScholarDigital Library
    9. A. De Coninck, B. De Baets, D. Kourounis, F. Verbosio, O. Schenk, S. Maenhout, and J. Fostier. 2016. Needles: Toward Large-Scale Genomic Prediction with Marker-by-Environment Interaction. Genetics 203, 1 (2016), 543–555. arXiv:http://www.genetics.org/content/203/1/543.full.pdfGoogle Scholar
    10. E. D. Demaine, M. L. Demaine, V. Hart, G. N. Price, and T. Tachi. 2011a. (Non) existence of pleated folds: how paper folds between creases. Graphs and Combinatorics 27, 3 (2011), 377–397. Google ScholarDigital Library
    11. E. D. Demaine, M. L. Demaine, D. Koschitz, and T. Tachi. 2011b. Curved crease folding: a review on art, design and mathematics. In Proceedings of the IABSE-IASS Symposium: Taller, Longer, Lighter. 20–23.Google Scholar
    12. E. D. Demaine and J. O’Rourke. 2007. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press. Google ScholarDigital Library
    13. M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. ACM SIGGRAPH. 317–324. Google ScholarDigital Library
    14. M. P. do Carmo. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.Google Scholar
    15. I. Eckstein, J.-P. Pons, Y. Tong, C.-C. Kuo, and M. Desbrun. 2007. Generalized surface flows for mesh processing. In Proc. Symposium on Geometry Processing. 183–192. Google ScholarDigital Library
    16. S. Fröhlich and M. Botsch. 2011. Example-Driven Deformations Based on Discrete Shells. Comput. Graph. Forum 30, 8 (2011), 2246–2257.Google ScholarCross Ref
    17. D. Fuchs and S. Tabachnikov. 1999. More on paperfolding. The American Mathematical Monthly 106, 1 (1999), 27–35.Google ScholarCross Ref
    18. W. C. Graustein. 1917. On the geodesics and geodesic circles on a developable surface. Annals of Mathematics 18, 3 (1917), 132–138.Google ScholarCross Ref
    19. R. F. Harik, H. Gong, and A. Bernard. 2013. 5-axis flank milling: A state-of-the-art review. Computer-Aided Design 45, 3 (2013), 796–808. Google ScholarDigital Library
    20. B. Heeren, M. Rumpf, P. Schröder, M. Wardetzky, and B. Wirth. 2014. Exploring the geometry of the space of shells. Comput. Graph. Forum 33, 5 (2014), 247–256.Google ScholarDigital Library
    21. B. Heeren, M. Rumpf, P. Schröder, M. Wardetzky, and B. Wirth. 2016. Splines in the space of shells. Comput. Graph. Forum 35, 5 (2016), 111–120.Google ScholarCross Ref
    22. T. Hoffmann. 2009. Discrete differential geometry of curves and surfaces. COE Lecture Notes 18 (2009).Google Scholar
    23. D. A. Huffman. 1976. Curvature and creases: a primer on paper. IEEE Trans. Computers 25, 10 (1976), 1010–1019. Google ScholarDigital Library
    24. M. Kazhdan, J. Solomon, and M. Ben-Chen. 2012. Can mean-curvature flow be modified to be non-singular? Comput. Graph. Forum 31, 5 (2012), 1745–1754. Google ScholarDigital Library
    25. M. Kilian, S. Flöry, Z. Chen, N. J. Mitra, A. Sheffer, and H. Pottmann. 2008. Curved folding. ACM Trans. Graph. 27, 3 (2008), 75:1–75:9. Google ScholarDigital Library
    26. M. Kilian, N. J. Mitra, and H. Pottmann. 2007. Geometric modeling in shape space. ACM Trans. Graph. 26, 3 (2007). Google ScholarDigital Library
    27. M. Kilian, A. Monszpart, and N. J. Mitra. 2017. String actuated curved folded surfaces. ACM Trans. Graph. 36, 3 (2017), 25:1–25:13. Google ScholarDigital Library
    28. D. Kourounis, A. Fuchs, and O. Schenk. 2018. Towards the Next Generation of Multiperiod Optimal Power Flow Solvers. IEEE Transactions on Power Systems PP, 99 (2018), 1–10.Google Scholar
    29. Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. 25, 3 (2006). Google ScholarDigital Library
    30. J. Mitani and T. Igarashi. 2011. Interactive design of planar curved folding by reflection. In Proc. Pacific Graphics, Short Papers.Google Scholar
    31. MOSEK ApS. 2017. The MOSEK optimization toolbox for MATLAB manual. Version 8.1. http://docs.mosek.com/8.1/toolbox/index.htmlGoogle Scholar
    32. R. Narain, T. Pfaff, and J. F. O’Brien. 2013. Folding and Crumpling Adaptive Sheets. ACM Trans. Graph. 32, 4 (2013). Google ScholarDigital Library
    33. J. Nocedal. 1980. Updating quasi-Newton matrices with limited storage. Math. Comp. 35, 151 (1980), 773–782.Google ScholarCross Ref
    34. J. Nocedal and S. J. Wright. 2006. Sequential quadratic programming. Springer.Google Scholar
    35. Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, and L. Liu. 2018. Anderson Acceleration for Geometry Optimization and Physics Simulation. ACM Trans. Graph. 37, 4, Article 42 (July 2018), 14 pages. Google ScholarDigital Library
    36. U. Pinkall and K. Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1 (1993), 15–36.Google ScholarCross Ref
    37. H. Pottmann and J. Wallner. 2001. Computational line geometry. Springer, Berlin, Heidelberg, New York. Google ScholarDigital Library
    38. M. Rabinovich, T. Hoffmann, and O. Sorkine-Hornung. 2018. Discrete Geodesic Nets for Modeling Developable Surfaces. ACM Trans. Graph. 37, 2 (2018), 16. Google ScholarDigital Library
    39. T. W. Sederberg, P. Gao, G. Wang, and H. Mu. 1993. 2-D shape blending: an intrinsic solution to the vertex path problem. In Proc. ACM SIGGRAPH. 15–18. Google ScholarDigital Library
    40. J. Solomon, E. Vouga, M. Wardetzky, and E. Grinspun. 2012. Flexible developable surfaces. Comput. Graph. Forum 31, 5 (2012), 1567–1576. Google ScholarDigital Library
    41. O. Sorkine and M. Alexa. 2007. As-rigid-as-possible surface modeling. In Proc. Symposium on Geometry Processing. 109–116. Google ScholarDigital Library
    42. O. Stein, E. Grinspun, and K. Crane. 2018. Developability of triangle meshes. ACM Trans. Graph. 37, 4 (2018). Google ScholarDigital Library
    43. G. Sundaramoorthi, A. Yezzi, and A. C. Mennucci. 2007. Sobolev active contours. International Journal of Computer Vision 73, 3 (2007), 345–366. Google ScholarDigital Library
    44. T. Tachi. 2009. Simulation of rigid origami. Origami 4 (2009), 175–187.Google ScholarCross Ref
    45. C. Tang, P. Bo, J. Wallner, and H. Pottmann. 2016. Interactive design of developable surfaces. ACM Trans. Graph. 35, 2, Article 12 (2016), 12 pages. Google ScholarDigital Library
    46. F. Verbosio, A. D. Coninck, D. Kourounis, and O. Schenk. 2017. Enhancing the scalability of selected inversion factorization algorithms in genomic prediction. Journal of Computational Science 22, Supplement C (2017), 99 — 108.Google Scholar
    47. M. Wardetzky. 2007. Discrete differential operators on polyhedral surfaces – convergence and approximation. Ph.D. Dissertation. Freie Universität Berlin.Google Scholar
    48. M. Wardetzky, S. Mathur, F. Kälberer, and E. Grinspun. 2007. Discrete Laplace operators: no free lunch. In Proc. Symposium on Geometry Processing. 33–37. Google ScholarDigital Library
    49. Y.-L. Yang, Y.-J. Yang, H. Pottmann, and N. J. Mitra. 2011. Shape space exploration of constrained meshes. ACM Trans. Graph. 30, 6 (2011). Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org