“The Method of Moving Frames for Surface Global Parametrization”
Conference:
Type(s):
Title:
- The Method of Moving Frames for Surface Global Parametrization
Presenter(s)/Author(s):
Abstract:
We introduce a surface parametrization algorithm supporting seamless constraints and feature alignment based on Cartan?s method of moving frames. Using a discretization of Cartan?s structure equations, we derive a non-linear least-square problem which optimizes both singularity positions and uv-coordinates simultaneously in order to minimize any provided distortion function.
References:
[1]
Noam Aigerman and Yaron Lipman. 2015. Orbifold Tutte embeddings. ACM Trans. Graph. 34, 6 (2015), 190?191.
[2]
Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf Schenk, Jonas Thies, and Gerhard Wellein. 2020. A recursive algebraic coloring technique for hardware-efficient symmetric sparse matrix-vector multiplication. ACM Trans. Parallel Comput. 7, 3, Article 19 (June2020), 37 pages.
[3]
Mirela Ben-Chen, Craig Gotsman, and Guy Bunin. 2008. Conformal flattening by curvature prescription and metric scaling. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 449?458.
[4]
Matthias Bollh?fer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019. Large-scale sparse inverse covariance matrix estimation. SIAM J. Sci. Comput. 41, 1 (2019), A380?A401. arXiv:https://doi.org/10.1137/17M1147615
[5]
Matthias Bollh?fer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli. 2020. State-of-the-art sparse direct solvers. In Parallel Algorithms in Computational Science and Engineering, Ananth Grama and Ahmed H. Sameh (Eds.). Springer International Publishing, Cham, 3?33.
[6]
David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt. 2013. Integer-grid maps for reliable quad meshing. ACM Trans. Graph. 32, 4 (2013), 1?12.
[7]
Alon Bright, Edward Chien, and Ofir Weber. 2017. Harmonic global parametrization with rational holonomy. ACM Trans. Graph. 36, 4 (2017), 1?15.
[8]
Marcel Campen, Hanxiao Shen, Jiaran Zhou, and Denis Zorin. 2019. Seamless parametrization with arbitrary cones for arbitrary genus. ACM Trans. Graph. 39, 1 (Dec.2019), 2:1?2:19.
[9]
?lie Cartan et al. 2001. Riemannian Geometry in an Orthogonal Frame: From Lectures Delivered by ?lie Cartan at the Sorbonne in 1926-1927. World Scientific, Singapore.
[10]
David Cohen-Steiner and Jean-Marie Morvan. 2003. Restricted delaunay triangulations and normal cycle. In Proceedings of the 19th Annual Symposium on Computational Geometry (SCG?03). Association for Computing Machinery, New York, NY, 312?321.
[11]
Etienne Corman and Keenan Crane. 2019. Symmetric moving frames. ACM Trans. Graph. 38, 4 (2019).
[12]
Keenan Crane, Mathieu Desbrun, and Peter Schr?der. 2010. Trivial connections on discrete surfaces. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 1525?1533.
[13]
Fernando de Goes, Mathieu Desbrun, and Yiying Tong. 2016. Vector field processing on triangle meshes. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH?16). 1?49.
[14]
David Desobry, Fran?ois Protais, Nicolas Ray, Etienne Corman, and Dmitry Sokolov. 2021. Frame fields for CAD models. In Proceedings of the International Symposium on Visual Computing. Springer, 421?434.
[15]
Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Integrable polyvector fields. ACM Trans. Graph. 34, 4 (2015), 1?12.
[16]
Hans-Christian Ebke, David Bommes, Marcel Campen, and Leif Kobbelt. 2013. QEx: Robust quad mesh extraction. ACM Trans. Graph. 32, 6 (2013), 1?10.
[17]
Qing Fang, Wenqing Ouyang, Mo Li, Ligang Liu, and Xiao-Ming Fu. 2021. Computing sparse cones with bounded distortion for conformal parameterizations. ACM Trans. Graph. 40, 6 (2021), 1?9.
[18]
Xianzhong Fang, Hujun Bao, Yiying Tong, Mathieu Desbrun, and Jin Huang. 2018. Quadrangulation through morse-parameterization hybridization. ACM Trans. Graph. 37, 4 (2018), 1?15.
[19]
Xiao-Ming Fu and Yang Liu. 2016. Computing inversion-free mappings by simplex assembly. ACM Trans. Graph. 35, 6 (2016), 1?12.
[20]
Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, Fran?ois Protais, David Desobry, and Dmitry Sokolov. 2022. Practical lowest distortion mapping. Retrieved from https://arXiv:2201.12112.
[21]
Anil Nirmal Hirani. 2003. Discrete exterior calculus. Ph.D. Dissertation. California Institute of Technology.
[22]
Kai Hormann, Konrad Polthier, and Alia Sheffer. 2008. Mesh parameterization: Theory and practice. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques Asia 2008 Courses (SIGGRAPHAsia?08). Association for Computing Machinery, New York, NY, Article 12, 87 pages.
[23]
Felix K?lberer, Matthias Nieser, and Konrad Polthier. 2007. Quadcover-surface parameterization using branched coverings. In Computer Graphics Forum, Vol. 26. Wiley Online Library, 375?384.
[24]
Michael Kazhdan, Jake Solomon, and Mirela Ben-Chen. 2012. Can mean-curvature flow be modified to be non-singular?. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 1745?1754.
[25]
Felix Kn?ppel, Keenan Crane, Ulrich Pinkall, and Peter Schr?der. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4 (2013).
[26]
Felix Kn?ppel, Keenan Crane, Ulrich Pinkall, and Peter Schr?der. 2015. Stripe patterns on surfaces. ACM Trans. Graph. 34, 4 (2015).
[27]
Marin Kobilarov, Keenan Crane, and Mathieu Desbrun. 2009. Lie group integrators for animation and control of vehicles. ACM Trans. Graph. 28, 2 (2009), 1?14.
[28]
Steven G. Krantz and Harold R. Parks. 2008. Geometric Integration Theory. Springer Science & Business Media, Cham.
[29]
Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: a LLVM-based Python JIT compiler. In Proceedings of the 2nd Workshop on the LLVM Compiler Infrastructure in HPC. 1?6.
[30]
Zohar Levi. 2021. Direct seamless parametrization. ACM Trans. Graph. 40, 1 (2021), 1?14.
[31]
Zohar Levi. 2022. Seamless parametrization of spheres with controlled singularities. In Computer Graphics Forum, Vol. 41. Wiley Online Library, 57?68.
[32]
Bruno L?vy, Sylvain Petitjean, Nicolas Ray, and J?rome Maillot. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3 (2002), 362?371.
[33]
Mo Li, Qing Fang, Wenqing Ouyang, Ligang Liu, and Xiao-Ming Fu. 2022. Computing sparse integer-constrained cones for conformal parameterizations. ACM Trans. Graph. 41, 4 (2022), 1?13.
[34]
Yaron Lipman, Daniel Cohen-Or, Ran Gal, and David Levin. 2007. Volume and shape preservation via moving frame manipulation. ACM Trans. Graph. 26, 1 (2007), 5?es.
[35]
Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-Or. 2005. Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24, 3 (2005), 479?487.
[36]
Beibei Liu, Yiying Tong, Fernando De Goes, and Mathieu Desbrun. 2016. Discrete connection and covariant derivative for vector field analysis and design. ACM Trans. Graph. 35, 3 (2016), 1?17.
[37]
Hao-Yu Liu, Zhong-Yuan Liu, Zheng-Yu Zhao, Ligang Liu, and Xiao-Ming Fu. 2020. Practical fabrication of discrete Chebyshev nets. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 13?26.
[38]
Naoki Marumo, Takayuki Okuno, and Akiko Takeda. 2020. Constrained Levenberg-Marquardt method with global complexity bound. Retrieved from https://arXiv:2004.08259.
[39]
Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust field-aligned global parametrization. ACM Trans. Graph. 33, 4 (2014), 1?14.
[40]
Ashish Myles and Denis Zorin. 2012. Global parametrization by incremental flattening. ACM Trans. Graph. 31, 4 (2012), 1?11.
[41]
Ashish Myles and Denis Zorin. 2013. Controlled-distortion constrained global parametrization. ACM Trans. Graph. 32, 4 (2013), 1?14.
[42]
Jonathan Palacios and Eugene Zhang. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3 (2007), 55?es.
[43]
Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014. Frame fields: Anisotropic and non-orthogonal cross fields. ACM Trans. Graph. 33, 4 (2014), 1?11.
[44]
Kacper Pluta, Michal Edelstein, Amir Vaxman, and Mirela Ben-Chen. 2021. PH-CPF: Planar hexagonal meshing using coordinate power fields. ACM Trans. Graph. 40, 4 (2021), 1?19.
[45]
Lenka Pt??kov? and Luiz Velho. 2021. A simple and complete discrete exterior calculus on general polygonal meshes. Comput. Aided Geom. Design 88 (2021), 102002.
[46]
Nicolas Ray, Wan Chiu Li, Bruno L?vy, Alla Sheffer, and Pierre Alliez. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4 (2006), 1460?1485.
[47]
Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno L?vy. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2 (2008), 1?13.
[48]
Andrew O. Sageman-Furnas, Albert Chern, Mirela Ben-Chen, and Amir Vaxman. 2019. Chebyshev nets from commuting polyvector fields. ACM Trans. Graph. 38, 6 (2019), 1?16.
[49]
Rohan Sawhney and Keenan Crane. 2018. Boundary first flattening. ACM Trans. Graph. 37, 1 (2018), 5.
[50]
R. W. Sharpe. 1997. Cartans generalization of Kleins Erlangen program. Differential Geometry, Graduate Texts in Mathematics 166 (1997).
[51]
Hanxiao Shen, Leyi Zhu, Ryan Capouellez, Daniele Panozzo, Marcel Campen, and Denis Zorin. 2022. Which cross fields can be quadrangulated? Global parameterization from prescribed holonomy signatures. ACM Trans. Graph. 41, 4 (2022), 1?12.
[52]
Yousuf Soliman, Albert Chern, Olga Diamanti, Felix Kn?ppel, Ulrich Pinkall, and Peter Schr?der. 2021. Constrained willmore surfaces. ACM Trans. Graph. 40, 4 (2021), 1?17.
[53]
Yousuf Soliman, Dejan Slep?ev, and Keenan Crane. 2018. Optimal cone singularities for conformal flattening. ACM Trans. Graph. 37, 4 (2018), 1?17.
[54]
Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Proceedings of the Symposium on Geometry Processing, Vol. 4. 109?116.
[55]
Boris Springborn, Peter Schr?der, and Ulrich Pinkall. 2008. Conformal equivalence of triangle meshes. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH?08). 1?11.
[56]
B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. 2020. OSQP: An operator splitting solver for quadratic programs. Math. Program. Comput. 12, 4 (2020), 637?672.
[57]
William Thomas Tutte. 1963. How to draw a graph. Proc. London Math. Soc. 3, 1 (1963), 743?767.
[58]
Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional field synthesis, design, and processing. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 545?572.
[59]
Ryan Viertel and Braxton Osting. 2019. An approach to quad meshing based on harmonic cross-valued maps and the Ginzburg?Landau theory. SIAM J. Sci. Comput. 41, 1 (2019), A452?A479.
[60]
Ana Maria Vintescu, Florent Dupont, and Guillaume Lavou?. 2017. Least squares affine transitions for global parameterization. J. WSCG 25, 1 (2017), 21?30.
[61]
Yuanzhen Wang, Beibei Liu, and Yiying Tong. 2012. Linear surface reconstruction from discrete fundamental forms on triangle meshes. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 2277?2287.
[62]
Jiayi Eris Zhang, Alec Jacobson, and Marc Alexa. 2021. Fast updates for least-squares rotational alignment. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 13?22.