“Text-to-vector Generation With Neural Path Representation” – ACM SIGGRAPH HISTORY ARCHIVES

“Text-to-vector Generation With Neural Path Representation”

  • ©

Conference:


Type(s):


Title:

    Text-to-vector Generation With Neural Path Representation

Presenter(s)/Author(s):



Abstract:


    We propose a novel pipeline to generate high-quality vector graphics based on text prompts. Utilizing neural path representation and a two-stage path optimization process, we can incorporate geometric constraints while preserving expressivity in the generated SVGs.

References:


    [1]
    Defu Cao, Zhaowen Wang, Jose Echevarria, and Yan Liu. 2023. SVGformer: Representation Learning for Continuous Vector Graphics using Transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10093–10102.

    [2]
    Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. 2020. Deepsvg: A hierarchical generative network for vector graphics animation. Advances in Neural Information Processing Systems 33 (2020), 16351–16361.

    [3]
    Ye Chen, Bingbing Ni, Xuanhong Chen, and Zhangli Hu. 2023. Editable Image Geometric Abstraction via Neural Primitive Assembly. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 23514–23523.

    [4]
    Louis Clou?tre and Marc Demers. 2019. Figr: Few-shot image generation with reptile. arXiv preprint arXiv:1901.02199 (2019).

    [5]
    Nassim Dehouche and Kullathida. 2023. What is in a Text-to-Image Prompt: The Potential of Stable Diffusion in Visual Arts Education. arXiv preprint arXiv:2301.01902 (2023).

    [6]
    Edoardo Alberto Dominici, Nico Schertler, Jonathan Griffin, Shayan Hoshyari, Leonid Sigal, and Alla Sheffer. 2020. Polyfit: Perception-aligned vectorization of raster clip-art via intermediate polygonal fitting. ACM Transactions on Graphics (TOG) 39, 4 (2020), 77–1.

    [7]
    Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. 2017. Photo2clipart: Image abstraction and vectorization using layered linear gradients. ACM Transactions on Graphics (TOG) 36, 6 (2017), 1–11.

    [8]
    Kevin Frans, Lisa Soros, and Olaf Witkowski. 2022. Clipdraw: Exploring text-to-drawing synthesis through language-image encoders. Advances in Neural Information Processing Systems 35 (2022), 5207–5218.

    [9]
    Rinon Gal, Yael Vinker, Yuval Alaluf, Amit H Bermano, Daniel Cohen-Or, Ariel Shamir, and Gal Chechik. 2023. Breathing Life Into Sketches Using Text-to-Video Priors. arXiv preprint arXiv:2311.13608 (2023).

    [10]
    Michal Geyer, Omer Bar-Tal, Shai Bagon, and Tali Dekel. 2023. Tokenflow: Consistent diffusion features for consistent video editing. arXiv preprint arXiv:2307.10373 (2023).

    [11]
    David Ha and Douglas Eck. 2017. A neural representation of sketch drawings. arXiv preprint arXiv:1704.03477 (2017).

    [12]
    Amir Hertz, Kfir Aberman, and Daniel Cohen-Or. 2023. Delta denoising score. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 2328–2337.

    [13]
    Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems 33 (2020), 6840–6851.

    [14]
    Shayan Hoshyari, Edoardo Alberto Dominici, Alla Sheffer, Nathan Carr, Zhaowen Wang, Duygu Ceylan, and I-Chao Shen. 2018. Perception-driven semi-structured boundary vectorization. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–14.

    [15]
    Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021).

    [16]
    Adobe Illustrator. 2023. Turn ideas into illustrations with Text to Vector Graphic. https://www.adobe.com/products/illustrator/text-to-vector-graphic.html.

    [17]
    Illustroke. 2024. Stunning vector illustrations from text prompts. https://illustroke.com/.

    [18]
    Shir Iluz, Yael Vinker, Amir Hertz, Daniel Berio, Daniel Cohen-Or, and Ariel Shamir. 2023. Word-as-image for semantic typography. arXiv preprint arXiv:2303.01818 (2023).

    [19]
    Ajay Jain, Amber Xie, and Pieter Abbeel. 2022. VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models. arXiv preprint arXiv:2211.11319 (2022).

    [20]
    Kittl. 2024. AI Vector Generator. https://www.kittl.com/feature/ai-text-to-vector.

    [21]
    Johannes Kopf and Dani Lischinski. 2011. Depixelizing pixel art. In ACM SIGGRAPH 2011 papers. 1–8.

    [22]
    Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. 2022. Multi-Concept Customization of Text-to-Image Diffusion. arXiv preprint arXiv:2212.04488 (2022).

    [23]
    Tzu-Mao Li, Michal Luk??, Micha?l Gharbi, and Jonathan Ragan-Kelley. 2020. Differentiable vector graphics rasterization for editing and learning. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–15.

    [24]
    Hanyuan Liu, Chengze Li, Xueting Liu, and Tien-Tsin Wong. 2022. End-to-end line drawing vectorization. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 4559–4566.

    [25]
    Ying-Tian Liu, Zhifei Zhang, Yuan-Chen Guo, Matthew Fisher, Zhaowen Wang, and Song-Hai Zhang. 2023. DualVector: Unsupervised Vector Font Synthesis with DualPart Representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 14193–14202.

    [26]
    Raphael Gontijo Lopes, David Ha, Douglas Eck, and Jonathon Shlens. 2019. A learned representation for scalable vector graphics. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 7930–7939.

    [27]
    Xu Ma, Yuqian Zhou, Xingqian Xu, Bin Sun, Valerii Filev, Nikita Orlov, Yun Fu, and Humphrey Shi. 2022. Towards layer-wise image vectorization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16314–16323.

    [28]
    Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. 2021. Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073 (2021).

    [29]
    Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and Mark Chen. 2021. Glide: Towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021).

    [30]
    Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. 2022. Dreamfusion: Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988 (2022).

    [31]
    Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning transferable visual models from natural language supervision. In International conference on machine learning. PMLR, 8748–8763.

    [32]
    Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J Mitra. 2021. Im2vec: Synthesizing vector graphics without vector supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7342–7351.

    [33]
    Leo Sampaio Ferraz Ribeiro, Tu Bui, John Collomosse, and Moacir Ponti. 2020. Sketchformer: Transformer-based representation for sketched structure. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 14153–14162.

    [34]
    Juan A Rodriguez, Shubham Agarwal, Issam H Laradji, Pau Rodriguez, David Vazquez, Christopher Pal, and Marco Pedersoli. 2023. StarVector: Generating Scalable Vector Graphics Code from Images. arXiv preprint arXiv:2312.11556 (2023).

    [35]
    Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bj?rn Ommer. 2022. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10684–10695.

    [36]
    Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. 2022. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. arXiv preprint arXiv:2208.12242 (2022).

    [37]
    Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet, and Mohammad Norouzi. 2022. Palette: Image-to-image diffusion models. In ACM SIGGRAPH 2022 Conference Proceedings. 1–10.

    [38]
    Peter Schaldenbrand, Zhixuan Liu, and Jean Oh. 2022. Styleclipdraw: Coupling content and style in text-to-drawing translation. arXiv preprint arXiv:2202.12362 (2022).

    [39]
    Peter Selinger. 2003. Potrace: a polygon-based tracing algorithm.

    [40]
    Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. 2015. Deep unsupervised learning using nonequilibrium thermodynamics. In International conference on machine learning. PMLR, 2256–2265.

    [41]
    Yiren Song, Xning Shao, Kang Chen, Weidong Zhang, Minzhe Li, and Zhongliang Jing. 2022. CLIPVG: Text-Guided Image Manipulation Using Differentiable Vector Graphics. arXiv preprint arXiv:2212.02122 (2022).

    [42]
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, ?ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).

    [43]
    Yael Vinker, Ehsan Pajouheshgar, Jessica Y Bo, Roman Christian Bachmann, Amit Haim Bermano, Daniel Cohen-Or, Amir Zamir, and Ariel Shamir. 2022. Clipasso: Semantically-aware object sketching. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–11.

    [44]
    Andrey Voynov, Kfir Aberman, and Daniel Cohen-Or. 2023. Sketch-guided text-to-image diffusion models. In ACM SIGGRAPH 2023 Conference Proceedings. 1–11.

    [45]
    Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. 2023c. Modelscope text-to-video technical report. arXiv preprint arXiv:2308.06571 (2023).

    [46]
    Yizhi Wang and Zhouhui Lian. 2021. DeepVecFont: Synthesizing high-quality vector fonts via dual-modality learning. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1–15.

    [47]
    Yuqing Wang, Yizhi Wang, Longhui Yu, Yuesheng Zhu, and Zhouhui Lian. 2023b. DeepVecFont-v2: Exploiting Transformers to Synthesize Vector Fonts with Higher Quality. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18320–18328.

    [48]
    Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. 2023a. ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation. arXiv preprint arXiv:2305.16213 (2023).

    [49]
    Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. 2023. IconShop: Text-Guided Vector Icon Synthesis with Autoregressive Transformers. ACM Transactions on Graphics (TOG) 42, 6 (2023), 1–14.

    [50]
    Ximing Xing, Chuang Wang, Haitao Zhou, Jing Zhang, Qian Yu, and Dong Xu. 2023a. DiffSketcher: Text Guided Vector Sketch Synthesis through Latent Diffusion Models. arXiv preprint arXiv:2306.14685 (2023).

    [51]
    Ximing Xing, Haitao Zhou, Chuang Wang, Jing Zhang, Dong Xu, and Qian Yu. 2023b. SVGDreamer: Text Guided SVG Generation with Diffusion Model. arXiv preprint arXiv:2312.16476 (2023).

    [52]
    Chuan Yan, David Vanderhaeghe, and Yotam Gingold. 2020. A benchmark for rough sketch cleanup. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–14.

    [53]
    Ming Yang, Hongyang Chao, Chi Zhang, Jun Guo, Lu Yuan, and Jian Sun. 2015. Effective clipart image vectorization through direct optimization of bezigons. IEEE transactions on visualization and computer graphics 22, 2 (2015), 1063–1075.

    [54]
    Fangneng Zhan, Yingchen Yu, Rongliang Wu, Jiahui Zhang, Shijian Lu, Lingjie Liu, Adam Kortylewski, Christian Theobalt, and Eric Xing. 2023. Multimodal image synthesis and editing: A survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023).

    [55]
    Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023b. Adding conditional control to text-to-image diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 3836–3847.

    [56]
    Peiying Zhang, Nanxuan Zhao, and Jing Liao. 2023c. Text-Guided Vector Graphics Customization. In SIGGRAPH Asia 2023 Conference Papers. 1–11.

    [57]
    Yuxin Zhang, Nisha Huang, Fan Tang, Haibin Huang, Chongyang Ma, Weiming Dong, and Changsheng Xu. 2023a. Inversion-based style transfer with diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10146–10156.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org