“Spatial-spectral encoded compressive hyperspectral imaging” by Lin, Liu, Wu and Dai
Conference:
Type(s):
Title:
- Spatial-spectral encoded compressive hyperspectral imaging
Session/Category Title: Digital Photography
Presenter(s)/Author(s):
Abstract:
This paper proposes a novel compressive hyperspectral (HS) imaging approach that allows for high-resolution HS images to be captured in a single image. The proposed architecture comprises three key components: spatial-spectral encoded optical camera design, over-complete HS dictionary learning and sparse-constraint computational reconstruction. Our spatial-spectral encoded sampling scheme provides a higher degree of randomness in the measured projections than previous compressive HS imaging approaches; and a robust nonlinear sparse reconstruction method is employed to recover the HS images from the coded projection with higher performance. To exploit the sparsity constraint on the nature HS images for computational reconstruction, an over-complete HS dictionary is learned to represent the HS images in a sparser way than previous representations. We validate the proposed approach on both synthetic and real captured data, and show successful recovery of HS images for both indoor and outdoor scenes. In addition, we demonstrate other applications for the over-complete HS dictionary and sparse coding techniques, including 3D HS images compression and denoising.
References:
1. Aharon, M., Elad, M., and Bruckstein, A. 2006. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Proc. 54, 11, 4311–4322.
2. Arguello, H., Rueda, H., Wu, Y., Prather, D. W., and Arce, G. R. 2013. Higher-order computational model for coded aperture spectral imaging. Applied Optics 52, 10, D12–D21.Cross Ref
3. August, Y., Vachman, C., Rivenson, Y., and Stern, A. 2013. Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains. Applied Optics 52, 10, D46–D54.Cross Ref
4. Basedow, R. W., Carmer, D. C., and Anderson, M. E. 1995. Hydice system: Implementation and performance. In Proc. SPIE, 258–267.
5. Candes, E. J., and Tao, T. 2005. Decoding by linear programming. IEEE Trans. Inform. Theory 51, 12, 4203–4215.
6. Candes, E. J., Eldar, Y. C., Needell, D., and Randall, P. 2011. Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 31, 1, 59–73.Cross Ref
7. Chakrabarti, A., and Zickler, T. 2011. Statistics of real-world hyperspectral images. In Proc. IEEE CVPR, 193–200.
8. Chi, C., Yoo, H., and Ben-Ezra, M. 2010. Multi-spectral imaging by optimized wide band illumination. IJCV 86, 2-3, 140–151.
9. Donoho, D. L., and Huo, X. 2001. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47, 7, 2845–2862.
10. Donoho, D. L. 2006. Compressed sensing. IEEE Trans. Inform. Theory 52, 4, 1289–1306.
11. Du, H., Tong, X., Cao, X., and Lin, S. 2009. A prism-based system for multispectral video acquisition. In Proc. IEEE ICCV, 175–182.
12. Duarte-Carvajalino, J. M., and Sapiro, G. 2009. Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans. Im. Proc. 18, 7, 1395–1408.
13. Elad, M., and Aharon, M. 2006. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Im. Proc. 15, 12, 3736–3745.
14. Elad, M. 2007. Optimized projections for compressed sensing. IEEE Trans. Signal Proc. 55, 12, 5695–5702.
15. Gao, L., Kester, R. T., Hagen, N., and Tkaczyk, T. S. 2010. Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy. Optics Express 18, 14, 14330–14344.Cross Ref
16. Gat, N., Scriven, G., Garman, J., De Li, M., and Zhang, J. 2006. Development of four-dimensional imaging spectrometers (4D-IS). In Proc. SPIE Optics+ Photonics, 63020M–63020M.
17. Gat, N. 2000. Imaging spectroscopy using tunable filters: a review. In Proc. AeroSense, 50–64.
18. Gehm, M., John, R., Brady, D., Willett, R., and Schulz, T. 2007. Single-shot compressive spectral imaging with a dual-disperser architecture. Optics Express 15, 21, 14013–14027.Cross Ref
19. Gorman, A., Fletcher-Holmes, D. W., and Harvey, A. R. 2010. Generalization of the lyot filter and its application to snapshot spectral imaging. Optics Express 18, 6, 5602–5608.Cross Ref
20. Han, S., Sato, I., Okabe, T., and Sato, Y. 2011. Fast spectral reflectance recovery using DLP projector. In Proc. ACCV, 323–335.
21. Hitomi, Y., Gu, J., Gupta, M., Mitsunaga, T., and Nayar, S. K. 2011. Video from a single coded exposure photograph using a learned over-complete dictionary. In Proc. IEEE ICCV, 287–294.
22. Hullin, M. B., Hanika, J., Ajdin, B., Seidel, H.-P., Kautz, J., and Lensch, H. 2010. Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions. ACM Trans. Graph. (SIGGRAPH) 29, 4, 97.
23. Johnson, W. R., Wilson, D. W., and Bearman, G. 2006. Spatial-spectral modulating snapshot hyperspectral imager. Applied Optics 45, 9, 1898–1908.Cross Ref
24. Kawakami, R., Wright, J., Tai, Y.-W., Matsushita, Y., Ben-Ezra, M., and Ikeuchi, K. 2011. High-resolution hyperspectral imaging via matrix factorization. In Proc. IEEE CVPR, 2329–2336.
25. Kim, M. H., Harvey, T. A., Kittle, D. S., Rushmeier, H., Dorsey, J., Prum, R. O., and Brady, D. J. 2012. 3D imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Trans. Graph. (SIGGRAPH) 31, 4, 38.
26. Kittle, D., Choi, K., Wagadarikar, A., and Brady, D. J. 2010. Multiframe image estimation for coded aperture snapshot spectral imagers. Applied Optics 49, 36, 6824–6833.Cross Ref
27. Lin, X., Suo, J., Wetzstein, G., Dai, Q., and Raskar, R. 2013. Coded focal stack photography. In Proc. IEEE ICCP, 1–9.
28. Lin, X., Wetzstein, G., Liu, Y., and Dai, Q. 2014. Dual-coded compressive hyperspectral imaging. Optics Letters 39, 7, 2044–2047.Cross Ref
29. Ma, C., Cao, X., Tong, X., Dai, Q., and Lin, S. 2013. Acquisition of high spatial and spectral resolution video with a hybrid camera system. IJCV, 1–15.
30. Manakov, A., Restrepo, J. F., Klehm, O., Hegedüs, R., Eisemann, E., Seidel, H.-P., and Ihrke, I. 2013. A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging. ACM Trans. Graph. (SIGGRAPH) 32, 4, 47.
31. Marwah, K., Wetzstein, G., Bando, Y., and Raskar, R. 2013. Compressive light field photography using overcomplete dictionaries and optimized projections. ACM Trans. Graph. (SIGGRAPH) 32, 4, 46.
32. Mohan, A., Raskar, R., and Tumblin, J. 2008. Agile spectrum imaging: Programmable wavelength modulation for cameras and projectors. Computer Graphics Forum 27, 2, 709–717.Cross Ref
33. Natarajan, B. K. 1995. Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 2, 227–234.
34. Pan, Z., Healey, G., Prasad, M., and Tromberg, B. 2003. Face recognition in hyperspectral images. IEEE Trans. PAMI 25, 12, 1552–1560.
35. Park, J.-I., Lee, M.-H., Grossberg, M. D., and Nayar, S. K. 2007. Multispectral imaging using multiplexed illumination. In Proc. IEEE ICCV, 1–8.
36. Parmar, M., Lansel, S., and Wandell, B. A. 2008. Spatiospectral reconstruction of the multispectral datacube using sparse recovery. In Proc. IEEE ICIP, 473–476.
37. Pham, T. H., Bevilacqua, F., Spott, T., Dam, J. S., Tromberg, B. J., and Andersson-Engels, S. 2000. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with non-contact Fourier-transform hyperspectral imaging. Applied Optics 39, 34, 6487–6497.Cross Ref
38. Porter, W. M., and Enmark, H. T. 1987. A system overview of the airborne visible/infrared imaging spectrometer (AVIRIS). In Proc. SPIE, vol. 834, 22–31.
39. Rajwade, A., Kittle, D., Tsai, T.-H., Brady, D., and Carin, L. 2013. Coded hyperspectral imaging and blind compressive sensing. SIAM J. Imaging Sci. 6, 2, 782–812.Cross Ref
40. Schechner, Y. Y., and Nayar, S. K. 2002. Generalized mosaicing: Wide field of view multispectral imaging. IEEE Trans. PAMI 24, 10, 1334–1348.
41. Smith, W. L., Zhou, D. K., Harrison, F. W., Revercomb, H. E., Larar, A. M., Huang, H.-L., and Huang, B. 2001. Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft. In Proc. SPIE, 94–102.
42. Van Den Berg, E., and Friedlander, M. P. 2008. Probing the pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31, 2, 890–912.
43. Wagadarikar, A. A., Pitsianis, N. P., Sun, X., and Brady, D. J. 2009. Video rate spectral imaging using a coded aperture snapshot spectral imager. Optics Express 17, 8, 6368–6388.Cross Ref
44. Wu, Y., Mirza, I. O., Arce, G. R., and Prather, D. W. 2011. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system. Optics Letters 36, 14, 2692–2694.Cross Ref
45. Yamaguchi, M., Haneishi, H., Fukuda, H., Kishimoto, J., Kanazawa, H., Tsuchida, M., Iwama, R., and Ohyama, N. 2006. High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications. In Proc. SPIE, 60620G–60620G.
46. Zhou, C., and Nayar, S. K. 2011. Computational cameras: convergence of optics and processing. IEEE Trans. Im. Proc. 20, 12, 3322–3340.


