“Single view reflectance capture using multiplexed scattering and time-of-flight imaging” – ACM SIGGRAPH HISTORY ARCHIVES

“Single view reflectance capture using multiplexed scattering and time-of-flight imaging”

  • 2011-SA-Technical-Paper_Naik_-Single-View-Reflectance-Capture-using-Multiplexed-Scattering-and-Time-of-flight-Imaging

Conference:


Type(s):


Title:

    Single view reflectance capture using multiplexed scattering and time-of-flight imaging

Session/Category Title:   Cameras and Appearance


Presenter(s)/Author(s):



Abstract:


    This paper introduces the concept of time-of-flight reflectance estimation, and demonstrates a new technique that allows a camera to rapidly acquire reflectance properties of objects from a single view-point, over relatively long distances and without encircling equipment. We measure material properties by indirectly illuminating an object by a laser source, and observing its reflected light indirectly using a time-of-flight camera. The configuration collectively acquires dense angular, but low spatial sampling, within a limited solid angle range – all from a single viewpoint. Our ultra-fast imaging approach captures space-time “streak images” that can separate out different bounces of light based on path length. Entanglements arise in the streak images mixing signals from multiple paths if they have the same total path length. We show how reflectances can be recovered by solving for a linear system of equations and assuming parametric material models; fitting to lower dimensional reflectance models enables us to disentangle measurements.We demonstrate proof-of-concept results of parametric reflectance models for homogeneous and discretized heterogeneous patches, both using simulation and experimental hardware. As compared to lengthy or highly calibrated BRDF acquisition techniques, we demonstrate a device that can rapidly, on the order of seconds, capture meaningful reflectance information. We expect hardware advances to improve the portability and speed of this device.

References:


    1. Ashikhmin, M. 2007. Distribution-based BRDFs. University of Utah — Technical Report.Google Scholar
    2. Ashikmin, M., Premože, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In ACM SIGGRAPH 2000 Papers, 65–74. Google ScholarDigital Library
    3. Bai, J., Chandraker, M., Ng, T.-T., and Ramamoorthi, R. 2010. A dual theory of inverse and forward light transport. In ECCV 2010, 1–8. Google ScholarDigital Library
    4. Cornell, 2001. Reflectance data. www.graphics.cornell.edu/online/measurements/reflectance.Google Scholar
    5. Dana, K., van Ginneken, B., Nayar, S., and Koenderink, J. 1999. Reflectance and texture of real-world surfaces. ACM Transactions on Graphics 18, 1, 1–34. Google ScholarDigital Library
    6. Degnan, J. J. 2002. Asynchronous laser transponders for precise interplanetary ranging and time transfer. Journal of Geodynamics 34, 3-4, 551–594.Google ScholarCross Ref
    7. Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., Ben-Ezra, M., and Guo, B. 2010. Manifold bootstrapping for SVBRDF capture. In ACM SIGGRAPH 2010 papers, 98:1–98:10. Google ScholarDigital Library
    8. Dudley, J. M., Reid, D. T., Ebrahimzadeh, M., and Sibbett, W. 1994. Characterisics of a noncritically phasematched Ti:sapphire pumped femtosecond optical parametric oscillator. Optics Communications 104, 4,5,6 (January), 419–430.Google Scholar
    9. Forsyth, D., and Zisserman, A. 1990. Shape from shading in the light of mutual illumination. Image Vision Comput. 8 (February), 42–49. Google ScholarDigital Library
    10. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. In ACM SIGGRAPH 2003 Papers, 749–758. Google ScholarDigital Library
    11. Garg, G., Talvala, E.-V., Levoy, M., and Lensch, H. P. A. 2006. Symmetric photography: Exploiting data-sparseness in reflectance fields. In Rendering Techniques 2006, 251–262. Google ScholarDigital Library
    12. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2009. Estimating specular roughness and anisotropy from second order spherical gradient illumination. Computer Graphics Forum 28, 4, 1161–1170. Google ScholarDigital Library
    13. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2010. Circularly polarized spherical illumination reflectometry. In ACM SIGGRAPH Asia 2010 papers, 162:1–162:12. Google ScholarDigital Library
    14. Ghosh, A., Heidrich, W., Achutha, S., and O’Toole, M. 2010. A basis illumination approach to BRDF measurement. Int. J. Comput. Vision 90 (November), 183–197. Google ScholarDigital Library
    15. Goldman, D., Curless, B., Hertzmann, A., and Seitz, S. 2010. Shape and spatially-varying BRDFs from photometric stereo. IEEE PAMI 32, 6 (june), 1060–1071. Google ScholarDigital Library
    16. Han, J. Y., and Perlin, K. 2003. Measuring bidirectional texture reflectance with a kaleidoscope. In ACM SIGGRAPH 2003 Papers, 741–748. Google ScholarDigital Library
    17. Hasinoff, S., Durand, F., and Freeman, W. 2010. Noise-optimal capture for high dynamic range photography. In CVPR 2010, 553–560.Google Scholar
    18. Hawkins, T., Einarsson, P., and Debevec, P. E. 2005. A dual light stage. In Rendering Techniques, K. Bala and P. Dutre, Eds., 91–98. Google ScholarCross Ref
    19. Holroyd, M., Lawrence, J., Humphreys, G., and Zickler, T. 2008. A photometric approach for estimating normals and tangents. In ACM SIGGRAPH Asia 2008 papers, 133:1–133:9. Google ScholarDigital Library
    20. Jakob, W., 2010. Mitsuba physically-based renderer. www.mitsuba-renderer.org.Google Scholar
    21. Kirmani, A., Hutchison, T., Davis, J., and Raskar, R. 2009. Looking around the corner using transient imaging. In ICCV 2009, 159–166.Google Scholar
    22. Kuthirummal, S., and Nayar, S. K. 2006. Multiview radial catadioptric imaging for scene capture. In ACM SIGGRAPH 2006 Papers, 916–923. Google ScholarDigital Library
    23. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. In ACM SIGGRAPH 2006 Papers, 735–745. Google ScholarDigital Library
    24. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2001. Image-based reconstruction of spatially varying materials. In Eurographics Workshop on Rendering, 63–70. Google ScholarDigital Library
    25. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Transactions on Graphics 22, 2, 234–257. Google ScholarDigital Library
    26. Liu, S., Ng, T., and Matsushita, Y. 2010. Shape from second-bounce of light transport. In ECCV 2010, 280–293. Google ScholarDigital Library
    27. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Eurographics Symposium on Rendering, 183–194. Google ScholarDigital Library
    28. Marschner, S., Westin, S., Lafortune, E., Torrance, K., and Greenberg, D. 1999. Image-Based BRDF measurement including human skin. In Eurographics Workshop on Rendering, 139–152. Google ScholarDigital Library
    29. Mathworks. 2011. Matlab Optimization Toolbox User’s Guide http://www.mathworks.com/help/pdf_doc/optim/optim_tb.pdf Last accessed 4-September-2011. 6-1–6-18.Google Scholar
    30. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. In ACM SIGGRAPH 2003 Papers, 759–769. Google ScholarDigital Library
    31. McAllister, D. 2002. A Generalized Surface Appearance Representation for Computer Graphics. PhD thesis, UNC Chapel Hill. Google ScholarDigital Library
    32. Nayar, S. K., Ikeuchi, K., and Kanade, T. 1991. Shape from interreflections. Int. J. Comput. Vision 6 (August), 173–195. Google ScholarDigital Library
    33. Nayar, S. K., Krishnan, G., Grossberg, M. D., and Raskar, R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. In ACM SIGGRAPH 2006 Papers, 935–944. Google ScholarDigital Library
    34. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental Analysis of BRDF Models. In Eurographics Symposium on Rendering, 117–226. Google ScholarDigital Library
    35. Nicodemus, F. E., Richmond, J. C., and Hsia, J. J. 1977. Geometrical considerations and reflectance. National Bureau of Standards, NBS Monograph 160 (October).Google Scholar
    36. Rusinkiewicz, S. 1998. A new change of variables for efficient BRDF representation. In Eurographics Workshop on Rendering, 11–22.Google ScholarCross Ref
    37. Sato, Y., Wheeler, M., and Ikeuchi, K. 1997. Object shape and reflectance modeling from observation. In ACM SIGGRAPH 1997 papers, 379–387. Google ScholarDigital Library
    38. Schechner, Y., Nayar, S., and Belhumeur, P. 2007. Multiplexing for optimal lighting. IEEE PAMI 29, 8 (aug.), 1339–1354. Google ScholarDigital Library
    39. Seitz, S. M., Matsushita, Y., and Kutulakos, K. N. 2005. A theory of inverse light transport. In ICCV 2005, 1440–1447. Google ScholarDigital Library
    40. Sen, P., Chen, B., Garg, G., Marschner, S. R., Horowitz, M., Levoy, M., and Lensch, H. P. A. 2005. Dual photography. In ACM SIGGRAPH 2005 Papers, 745–755. Google ScholarDigital Library
    41. Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. In ACM SIGGRAPH 2008 papers, 41:1–41:9. Google ScholarDigital Library
    42. Wang, J., Dong, Y., Tong, X., Lin, Z., and Guo, B. 2009. Kernel nystrom method for light transport. In ACM SIGGRAPH 2009 papers, 29:1–29:10. Google ScholarDigital Library
    43. Warburton, R. E., McCarthy, A., Wallace, A. M., Hernandez-Marin, S., Hadfield, R. H., Nam, S. W., and Buller, G. S. 2007. Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength. Opt. Lett. 32, 15 (Aug), 2266–2268.Google ScholarCross Ref
    44. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In ACM SIGGRAPH 1992 papers, 265–272. Google ScholarDigital Library
    45. Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., and Debevec, P. 2005. Performance relighting and reflectance transformation with time-multiplexed illumination. In ACM SIGGRAPH 2005 Papers, 756–764. Google ScholarDigital Library
    46. Weyrich, T., Lawrence, J., Lensch, H. P. A., Rusinkiewicz, S., and Zickler, T. 2009. Principles of appearance acquisition and representation. Foundations and Trends in Computer Graphics and Vision 4, 2, 75–191. Google ScholarDigital Library
    47. Yu, Y., Debevec, P., Malik, J., and Hawkins, T. 1999. Inverse global illumination: recovering reflectance models of real scenes from photographs. In ACM SIGGRAPH 1999 papers, 215–224. Google ScholarDigital Library
    48. Zickler, T., Enrique, S., Ramamoorthi, R., and Belhumeur, P. 2005. Reflectance sharing: Image-based rendering from a sparse set of images. In Eurographics Symposium on Rendering, 253–264. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org