“Ships, splashes, and waves on a vast ocean” by Huang, Qu, Tan, Zhang, Michels, et al. …
Conference:
Type(s):
Title:
- Ships, splashes, and waves on a vast ocean
Session/Category Title: Turbulence and Fluids
Presenter(s)/Author(s):
Abstract:
The simulation of large open water surface is challenging using a uniform volumetric discretization of the Navier-Stokes equations. Simulating water splashes near moving objects, which height field methods for water waves cannot capture, necessitates high resolutions. Such simulations can be carried out using the Fluid-Implicit-Particle (FLIP) method. However, the FLIP method is not efficient for the long-lasting water waves that propagate to long distances, which require sufficient depth for a correct dispersion relationship. This paper presents a new method to tackle this dilemma through an efficient hybridization of volumetric and surface-based advection-projection discretizations. We design a hybrid time-stepping algorithm that combines a FLIP domain and an adaptively remeshed Boundary Element Method (BEM) domain for the incompressible Euler equations. The resulting framework captures the detailed water splashes near moving objects with the FLIP method, and produces convincing water waves with correct dispersion relationships at modest additional costs.
References:
1. Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty, and Eftychios Sifakis. 2017. Power Diagrams and Sparse Paged Grids for High Resolution Adaptive Liquids. ACM Trans. Graph. 36, 4, Article 140 (July 2017), 12 pages.
2. Ryoichi Ando and Christopher Batty. 2020. A Practical Octree Liquid Simulator with Adaptive Surface Resolution. ACM Trans. Graph. 39, 4, Article 32 (July 2020), 17 pages.
3. Ryoichi Ando, Nils Thuerey, and Chris Wojtan. 2013. Highly Adaptive Liquid Simulations on Tetrahedral Meshes. ACM Trans. Graph. 32, 4, Article 103 (July 2013), 10 pages.
4. Christopher Batty. 2018. Fluid3D. https://github.com/christopherbatty/Fluid3D.
5. Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A Fast Variational Framework for Accurate Solid-Fluid Coupling. ACM Trans. Graph. 26, 3 (July 2007), 100–es.
6. Haimasree Bhattacharya, Michael Bang Nielsen, and Robert Bridson. 2012. Steady State Stokes Flow Interpolation for Fluid Control.. In Eurographics (Short Papers). Citeseer, 57–60.
7. Morten Bojsen-Hansen and Chris Wojtan. 2016. Generalized Non-Reflecting Boundaries for Fluid Re-Simulation. ACM Trans. Graph. 35, 4, Article 96 (July 2016), 7 pages.
8. Jeremiah U. Brackbill and Hans M. Ruppel. 1986. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 2 (1986), 314–343.
9. Robert Bridson and Matthias Müller-Fischer. 2007. Fluid Simulation: SIGGRAPH 2007 Course Notes. In ACM SIGGRAPH 2007 Courses. Association for Computing Machinery, New York, NY, USA, 1–81.
10. José A. Canabal, David Miraut, Nils Thuerey, Theodore Kim, Javier Portilla, and Miguel A. Otaduy. 2016. Dispersion Kernels for Water Wave Simulation. ACM Trans. Graph. 35, 6, Article 202 (Nov. 2016), 10 pages.
11. Xi Chen, Ren chuan Zhu, Wen jun Zhou, and Ji Zhao. 2018. A 3D multi-domain high order boundary element method to evaluate time domain motions and added resistance of ship in waves. Ocean Engineering 159 (2018), 112 — 128.
12. Nuttapong Chentanez and Matthias Müller. 2011. Real-Time Eulerian Water Simulation Using a Restricted Tall Cell Grid. ACM Trans. Graph. 30, 4, Article 82 (July 2011), 10 pages.
13. Nuttapong Chentanez, Matthias Müller, and Tae-Yong Kim. 2015. Coupling 3D eulerian, heightfield and particle methods for interactive simulation of large scale liquid phenomena. IEEE Transactions on Visualization and Computer Graph (TVCG) 21, 10 (2015), 1116–1128.
14. Andrea Colagrossi and Maurizio Landrini. 2003. Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics. J. Comput. Phys. 191, 2 (Nov. 2003), 448–475.
15. Fang Da, Christopher Batty, and Eitan Grinspun. 2014. Multimaterial Mesh-Based Surface Tracking. ACM Trans. Graph. 33, 4, Article 112 (July 2014), 11 pages.
16. Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016a. Surface-Only Liquids. ACM Trans. Graph. 35, 4, Article 78 (July 2016), 12 pages.
17. Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016b. Surface-Only Liquids: Source Code. http://www.cs.columbia.edu/cg/surfaceliquids/code/.
18. R. Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013. Chimera Grids for Water Simulation. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Anaheim, California) (SCA ’13). Association for Computing Machinery, New York, NY, USA, 85–94.
19. Yu Fang, Ziyin Qu, Minchen Li, Xinxin Zhang, Yixin Zhu, Mridul Aanjaneya, and Chenfanfu Jiang. 2020. IQ-MPM: An Interface Quadrature Material Point Method for Non-Sticky Strongly Two-Way Coupled Nonlinear Solids and Fluids. ACM Trans. Graph. 39, 4, Article 51 (July 2020), 16 pages.
20. Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils Thuerey. 2016. Narrow Band FLIP for Liquid Simulations. In Proceedings of the 37th Annual Conference of the European Association for Computer Graphics (Lisbon, Portugal) (EG ’16). Eurographics Association, Goslar, DEU, 225–232.
21. Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A Polynomial Particle-in-Cell Method. ACM Trans. Graph. 36, 6, Article 222 (Nov. 2017), 12 pages.
22. Frederic Gibou, Ronald P Fedkiw, Li-Tien Cheng, and Myungjoo Kang. 2002. A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176, 1 (2002), 205–227.
23. Abhinav Golas, Rahul Narain, Jason Sewall, Pavel Krajcevski, Pradeep Dubey, and Ming Lin. 2012. Large-Scale Fluid Simulation Using Velocity-Vorticity Domain Decomposition. ACM Trans. Graph. 31, 6, Article 148 (Nov. 2012), 9 pages.
24. Ryan Goldade, Yipeng Wang, Mridul Aanjaneya, and Christopher Batty. 2019. An Adaptive Variational Finite Difference Framework for Efficient Symmetric Octree Viscosity. ACM Trans. Graph. 38, 4, Article Article 94 (July 2019), 14 pages.
25. Leslie Greengard and Vladimir Rokhlin. 1987. A fast algorithm for particle simulations. Journal of computational physics 73, 2 (1987), 325–348.
26. Stephan T. Grilli, J. Skourup, and I.A. Svendsen. 1989. An efficient boundary element method for nonlinear water waves. Engineering Analysis with Boundary Elements 6, 2 (1989), 97 — 107.
27. David Hahn and Chris Wojtan. 2016. Fast Approximations for Boundary Element Based Brittle Fracture Simulation. ACM Trans. Graph. 35, 4, Article 104 (July 2016), 11 pages.
28. Francis H Harlow. 1964. The particle-in-cell computing method for fluid dynamics. Methods Comput. Phys. 3 (1964), 319–343.
29. Francis H. Harlow and J. Eddie Welch. 1965. Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Physics of Fluids 8 (1965), 2182–2189.
30. Woo-Suck Hong. 2009. An Adaptive Sampling Approach to Incompressible Particle-Based Fluid. Texas A & M University, USA. AAI3370710.
31. Libo Huang, Torsten Hädrich, and Dominik L. Michels. 2019. On the Accurate Large-scale Simulation of Ferrofluids. ACM Trans. Graph. 38, 4, Article 93 (July 2019), 15 pages.
32. Libo Huang and Dominik L. Michels. 2020. Surface-Only Ferrofluids. ACM Trans. Graph. 39, 6, Article 174 (Nov. 2020), 17 pages.
33. H. Ibayashi, C. Wojtan, N. Thuerey, T. Igarashi, and R. Ando. 2020. Simulating Liquids on Dynamically Warping Grids. IEEE Transactions on Visualization and Computer Graphics 26, 06 (jun 2020), 2288–2302.
34. Markus Ihmsen, Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2012. Unified spray, foam and air bubbles for particle-based fluids. The Visual Computer 28, 6 (2012), 669–677.
35. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2014. Implicit Incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (2014), 426–435.
36. Geoffrey Irving, Eran Guendelman, Frank Losasso, and Ronald Fedkiw. 2006. Efficient Simulation of Large Bodies of Water by Coupling Two and Three Dimensional Techniques. ACM Trans. Graph. 25, 3, 805–811.
37. Doug L. James and Dinesh K. Pai. 1999. ArtDefo: Accurate Real Time Deformable Objects. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., USA, 65–72.
38. Stefan Jeschke, Christian Hafner, Nuttapong Chentanez, Miles Macklin, Matthias Müller-Fischer, and Christopher Wojtan. 2020. Making Procedural Water Waves Boundary-aware. Computer Graphics Forum 39, 8 (2020), 47–54.
39. Stefan Jeschke, Tomáš Skřivan, Matthias Müller-Fischer, Nuttapong Chentanez, Miles Macklin, and Chris Wojtan. 2018. Water Surface Wavelets. ACM Trans. Graph. 37, 4, Article 94 (July 2018), 13 pages.
40. Stefan Jeschke and Chris Wojtan. 2015. Water Wave Animation via Wavefront Parameter Interpolation. ACM Trans. Graph. 34, 3, Article 27 (May 2015), 14 pages.
41. Stefan Jeschke and Chris Wojtan. 2017. Water Wave Packets. ACM Trans. Graph. 36, 4, Article 103 (July 2017), 12 pages.
42. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The Affine Particle-in-Cell Method. ACM Trans. Graph. 34, 4, Article 51 (July 2015), 10 pages.
43. Todd Keeler and Robert Bridson. 2015. Ocean Waves Animation Using Boundary Integral Equations and Explicit Mesh Tracking. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Copenhagen, Denmark) (SCA ’14). Eurographics Association, Goslar, DEU, 11–19.
44. Spyros A. Kinnas and Ching-Yeh Hsin. 1992. Boundary element method for the analysis of the unsteady flow aroundextreme propeller geometries. AIAA Journal 30, 3 (1992), 688–696.
45. Michael Selwyn Longuet-Higgins and ED Cokelet. 1976. The deformation of steep surface waves on water-I. A numerical method of computation. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 350, 1660 (1976), 1–26.
46. Frank Losasso, Frédéric Gibou, and Ronald Fedkiw. 2004. Simulating Water and Smoke with an Octree Data Structure. ACM Trans. Graph. 23, 3 (Aug. 2004), 457–462.
47. Frank Losasso, Jerry Talton, Nipun Kwatra, and Ronald Fedkiw. 2008. Two-Way Coupled SPH and Particle Level Set Fluid Simulation. IEEE Transactions on Visualization and Computer Graphics 14, 4 (2008), 797–804.
48. Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology. ACM Trans. Graph. 32, 3, Article 27 (July 2013), 22 pages.
49. Yen Ting Ng, Chohong Min, and Frédéric Gibou. 2009. An Efficient Fluid-Solid Coupling Algorithm for Single-Phase Flows. J. Comput. Phys. 228, 23 (Dec. 2009), 8807–8829.
50. Michael B. Nielsen and Robert Bridson. 2011. Guide Shapes for High Resolution Naturalistic Liquid Simulation. ACM Trans. Graph. 30, 4, Article 83, 8 pages.
51. Michael B. Nielsen and Robert Bridson. 2016. Spatially Adaptive FLIP Fluid Simulations in Bifrost. In ACM SIGGRAPH 2016 Talks (Anaheim, California) (SIGGRAPH ’16). Association for Computing Machinery, New York, NY, USA, Article 41, 2 pages.
52. Michael B. Nielsen, Andreas Söderström, and Robert Bridson. 2013. Synthesizing Waves from Animated Height Fields. ACM Trans. Graph. 32, 1, Article 2 (Feb. 2013), 9 pages.
53. Michael B. Nielsen, Konstantinos Stamatelos, Adrian Graham, Marcus Nordenstam, and Robert Bridson. 2017. Localized Guided Liquid Simulations in Bifrost. In ACM SIGGRAPH 2017 Talks (Los Angeles, California) (SIGGRAPH ’17). Association for Computing Machinery, New York, NY, USA, Article 44, 2 pages.
54. Marc Rabaud and Frédéric Moisy. 2013. Ship wakes: Kelvin or Mach angle? Physical review letters 110, 21 (2013), 214503.
55. Camille Schreck, Christian Hafner, and Chris Wojtan. 2019. Fundamental Solutions for Water Wave Animation. ACM Trans. Graph. 38, 4, Article 130 (July 2019), 14 pages.
56. Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid: A Sparse Paged Grid Structure Applied to Adaptive Smoke Simulation. ACM Trans. Graph. 33, 6, Article 205 (Nov. 2014), 12 pages.
57. Side Effects Software. 2021. Houdini. (2021).
58. Andreas Söderström, Matts Karlsson, and Ken Museth. 2010. A PML-Based Nonreflective Boundary for Free Surface Fluid Animation. ACM Trans. Graph. 29, 5, Article 136 (Nov. 2010), 17 pages.
59. Barbara Solenthaler, Peter Bucher, Nuttapong Chentanez, Matthias Müller, and Markus Gross. 2011. SPH Based Shallow Water Simulation. In Workshop in Virtual Reality Interactions and Physical Simulation “VRIPHYS” (2011). The Eurographics Association.
60. Justin Solomon, Amir Vaxman, and David Bommes. 2017. Boundary Element Octahedral Fields in Volumes. ACM Trans. Graph. 36, 3, Article 28 (May 2017), 16 pages.
61. Alexey Stomakhin and Andrew Selle. 2017. Fluxed Animated Boundary Method. ACM Trans. Graph. 36, 4, Article 68 (July 2017), 8 pages.
62. Klaus Stüben. 2001. A review of algebraic multigrid. J. Comput. Appl. Math. 128, 1 (2001), 281–309. Numerical Analysis 2000. Vol. VII: Partial Differential Equations.
63. Jerry Tessendorf. 2001. Simulating Ocean Water. SIGGRAPH’99 Course Note (01 2001).
64. Nils Thuerey, Matthias Müller-Fischer, Simon Schirm, and Markus Gross. 2007. Realtime Breaking Waves for Shallow Water Simulations. In 15th Pacific Conference on Computer Graphics and Applications (PG’07). 39–46.
65. Nils Thuerey, Ulrich Rüde, and Marc Stamminger. 2006. Animation of Open Water Phenomena with coupled Shallow Water and Free Surface Simulations. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation, Marie-Paule Cani and James O’Brien (Eds.). The Eurographics Association.
66. Daniel Weber, Johannes Mueller-Roemer, André Stork, and Dieter Fellner. 2015. A Cut-Cell Geometric Multigrid Poisson Solver for Fluid Simulation. Computer Graphics Forum 34, 2 (2015), 481–491.
67. Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb. 2017. Infinite Continuous Adaptivity for Incompressible SPH. ACM Trans. Graph. 36, 4, Article 102 (July 2017), 10 pages.
68. Guoxiong Wu and R. Eatock Taylor. 2003. The coupled finite element and boundary element analysis of nonlinear interactions between waves and bodies. Ocean Engineering 30, 3 (2003), 387 — 400.
69. Yonghao Yue, Breannan Smith, Peter Yichen Chen, Maytee Chantharayukhonthorn, Ken Kamrin, and Eitan Grinspun. 2018. Hybrid Grains: Adaptive Coupling of Discrete and Continuum Simulations of Granular Media. ACM Trans. Graph. 37, 6, Article 283, 19 pages.
70. Cem Yuksel, Donald H. House, and John Keyser. 2007. Wave Particles. In ACM SIGGRAPH 2007 Papers (San Diego, California) (SIGGRAPH ’07). Association for Computing Machinery, New York, NY, USA, 99–es.
71. Aman Zhang and Yun-Long Liu. 2015. Improved three-dimensional bubble dynamics model based on boundary element method. J. Comput. Phys. 294 (2015), 208 — 223.
72. Changxi Zheng and Doug L. James. 2010. Rigid-Body Fracture Sound with Precomputed Soundbanks. In ACM SIGGRAPH 2010 Papers. Association for Computing Machinery, New York, NY, USA.
73. Bo Zhu, Wenlong Lu, Matthew Cong, Byungmoon Kim, and Ronald Fedkiw. 2013. A New Grid Structure for Domain Extension. ACM Trans. Graph. 32, 4, Article 63 (July 2013), 12 pages.
74. Yongning Zhu and Robert Bridson. 2005. Animating Sand as a Fluid. ACM Trans. Graph. 24, 3 (July 2005), 965–972.


