“Scintilla: Simulating Combustible Vegetation for Wildfires” – ACM SIGGRAPH HISTORY ARCHIVES

“Scintilla: Simulating Combustible Vegetation for Wildfires”

  • ©

Conference:


Type(s):


Title:

    Scintilla: Simulating Combustible Vegetation for Wildfires

Presenter(s)/Author(s):



Abstract:


    This paper introduces a new method for simulating wildfires, integrating detailed vegetation models and dynamic interactions like convection and combustion. It realistically depicts fire progression, ember transport, and the impact of interventions, validated through experiments and real-world data comparisons.

References:


    [1]
    N. J. Abram, B. J. Henley, A. Sen Gupta, T. J. R. Lippmann, H. Clarke, A. J. Dowdy, J. J. Sharples, R. H. Nolan, T. Zhang, M. J. Wooster, J. B. Wurtzel, K. J. Meissner, A. J. Pitman, A. M. Ukkola, B. P. Murphy, N. J. Tapper, and M. M. Boer. 2021. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment 2, 1 (07 Jan 2021), 8.

    [2]
    Sampath Adusumilli, James E. Chaplen, and David L. Blunck. 2021. Firebrand Generation Rates at the Source for Trees and a Shrub. Frontiers in Mechanical Engineering 7 (2021).

    [3]
    C. Anand, B. Shotorban, S. Mahalingam, S. McAllister, and D. Weise. 2017. Physics-Based Modeling of Live Wildland Fuel Ignition Experiments in the FIST Apparatus. Combustion Science and Technology 189 (03 2017).

    [4]
    Patricia L. Andrews. 2018. The Rothermel surface fire spread model and associated developments: A comprehensive explanation. Technical Report.

    [5]
    M. Aono and T.L. Kunii. 1984. Botanical Tree Image Generation. IEEE Comput. Graph. Appl. 4(5) (1984), 10–34.

    [6]
    Elena Aragoneses and Emilio Chuvieco. 2021. Generation and Mapping of Fuel Types for Fire Risk Assessment. Fire 4, 3 (2021).

    [7]
    O. Argudo, C. And?jar, A. Chica, E. Gu?rin, J. Digne, A. Peytavie, and E. Galin. 2017. Coherent multi-layer landscape synthesis. The Visual Computer 33, 6 (2017), 1005–1015.

    [8]
    O. Argudo, E. Galin, A. Peytavie, A. Paris, and E. Gu?rin. 2020. Simulation, Modeling and Authoring of Glaciers. ACM Trans. Graph. (SIGGRAPH Asia 2020) 39, 6 (2020).

    [9]
    V. Babrauskas. 2003. Ignition handbook: principles and applications to fire safety engineering, fire investigation, risk management and forensic science. Issaquah, WA, Fire Science Publishers 9 (2003).

    [10]
    S. Behrendt, C. Colditz, O. Franzke, J. Kopf, and O. Deussen. 2005. Realistic real-time rendering of landscapes using billboard clouds. CGF 24, 3 (2005), 507–516.

    [11]
    B. Benes, N. Andrysco, and O. ?t’ava. 2009. Interactive Modeling of Virtual Ecosystems. In Proceedings of the Fifth Eurographics Conference on Natural Phenomena (Munich, Germany) (NPH’09). Eurographics Association, Goslar, DEU, 9–16.

    [12]
    J. Bishop. 2007. Technical background of the fireline assessment method (FLAME). In The Fire Environment-Innovations, Management, and Policy Conference Proceedings. 27–74.

    [13]
    C. F. Bohren and D. B. Thorud. 1973. Two theoretical models of radiation heat transfer between forest trees and snowpacks. Agric. For. Meteorol. 11 (1973), 3–16.

    [14]
    D. Bradley, D. Nowrouzezahrai, and P. Beardsley. 2013. Image-based Reconstruction Synthesis of Dense Foliage. ACM Trans. Graph. 32, 4, Article 74 (2013), 74:1–74:10 pages.

    [15]
    R. Bridson and M. M?ller. 2007. Fluid simulation: SIGGRAPH course notes. (2007), 1–81.

    [16]
    E. Bruneton and F. Neyret. 2012. Real-time Realistic Rendering and Lighting of Forests. Comput. Graph. Forum 31, 2pt1 (2012), 373–382.

    [17]
    N. P. Cheney, J. S. Gould, and W. R. Catchpole. 1993. The Influence of Fuel, Weather and Fire Shape Variables on Fire-Spread in Grasslands. International Journal of Wildland Fire 3, 1 (1993), 31–44.

    [18]
    N. Chiba, K. Muraoka, H. Takahashi, and M. Miura. 1994. Two-dimensional visual simulation of flames, smoke and the spread of fire. JVCA 5, 1 (1994), 37–53.

    [19]
    M. Cieslak, U. Govindarajan, A. Garcia, A. Chandrashekar, T H?drich, A. Mendoza-Drosik, D. L. Michels, S. Pirk, C.-C. Fu, and W. Palubicki. 2024. Generating Diverse Agricultural Data for Vision-Based Farming Applications. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop: Vision for Agriculture (2024).

    [20]
    J. L. Coen. 2013. Modeling wildland fires : A description of the Coupled Atmosphere-Wildland Fire Environment model (CAWFE).

    [21]
    G. Cordonnier, P. Ecormier, E. Galin, J. Gain, B. Benes, and M.-P. Cani. 2018. Interactive Generation of Time-evolving, Snow-Covered Landscapes with Avalanches. CGF 37, 2 (2018), 497–509.

    [22]
    G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Gu?rin, A. Peytavie, and M.-P. Cani. 2017. Authoring Landscapes by Combining Ecosystem and Terrain Erosion Simulation. ACM Trans. Graph. 36, 4, Article 134 (2017), 12 pages.

    [23]
    O. Deussen, P. Hanrahan, B. Lintermann, R. M?ch, M. Pharr, and Przemyslaw Prusinkiewicz. 1998. Realistic Modeling and Rendering of Plant Ecosystems. ACM Trans. Graph. (1998), 275–286.

    [24]
    J.-L. Dupuy and M. Larini. 2000. Fire spread through a porous forest fuel bed: a radiative and convective model including fire-induced flow effects. International Journal of Wildland Fire 9, 3 (2000), 155–172.

    [25]
    L. Hern?ndez Encinas, S. Hoya White, A. Mart?n del Rey, and G. Rodr?guez S?nchez. 2007. Modelling forest fire spread using hexagonal cellular automata. Appl. Math. Model. 31, 6 (2007), 1213–1227.

    [26]
    R. Fedkiw, J. Stam, and H. W. Jensen. 2001. Visual Simulation of Smoke. Proc. of ACM SIGGRAPH (2001), 15–22.

    [27]
    Jean-Baptiste Filippi, Fr?d?ric Bosseur, Celine Mari, and C. Lac. 2018. Simulation of a Large Wildfire in a Coupled Fire-Atmosphere Model. Atmosphere 9 (06 2018), 218.

    [28]
    A. Galgano and C. Di Blasi. 2005. Infinite- versus finite-rate kinetics in simplified models of wood pyrolysis. Combustion Science and Technology 177 (2005), 279–303.

    [29]
    C. Godin and Y. Caraglio. 1998. A Multiscale Model of Plant Topological Structures. Journal of Theoretical Biology 191, 1 (1998), 1–46.

    [30]
    U. I. Gol’dshleger, K. V. Pribytkova, and V. V. Barzykin. 1973. Ignition of a condensed explosive by a hot object of finite dimensions. Combustion, Explosion and Shock Waves 9 (1973), 99–102.

    [31]
    J. Guo, H. Jiang, B. Benes, O. Deussen, X. Zhang, D. Lischinski, and H. Huang. 2020. Inverse Procedural Modeling of Branching Structures by Inferring L-Systems. ACM Transactions on Graphics 39, 5, Article 155 (June 2020), 13 pages.

    [32]
    R. Habel, A. Kusternig, and M. Wimmer. 2009. Physically Guided Animation of Trees. Comp. Graph. Forum 28, 2 (2009), 523–532.

    [33]
    Rory M. Hadden, Sarah Scott, Chris Lautenberger, and A. Carlos Fernandez-Pello. 2011. Ignition of Combustible Fuel Beds by Hot Particles: An Experimental and Theoretical Study. Fire Technology 47 (2011), 341–355.

    [34]
    T. H?drich, D. T. Banuti, W. Pa?ubicki, S. Pirk, and D. L. Michels. 2021. Fire in Paradise: Mesoscale Simulation of Wildfires. ACM Trans. on Graph. 40, 4, Article 163 (2021).

    [35]
    T. H?drich, B. Benes, O. Deussen, and S. Pirk. 2017. Interactive Modeling and Authoring of Climbing Plants. CGF 36, 2 (2017), 49–61.

    [36]
    Torsten H?drich, Mi?osz Makowski, Wojtek Pa?ubicki, Daniel T. Banuti, S?ren Pirk, and Dominik L. Michels. 2020. Stormscapes: Simulating Cloud Dynamics in the Now. ACM Trans. Graph. 39, 6, Article 175 (Nov. 2020), 16 pages.

    [37]
    Jorge Alejandro Amador Herrera, Torsten H?drich, Wojtek Pa?ubicki, Daniel T. Banuti, S?ren Pirk, and Dominik L. Michels. 2021. Weatherscapes: Nowcasting Heat Transfer and Water Continuity. ACM Transaction on Graphics 40, 6, Article 204 (12 2021).

    [38]
    Y. Hong, D. Zhu, X. Qiu, and Z. Wang. 2010. Geometry-based Control of Fire Simulation. Vis. Comput. 26, 9 (2010), 1217–1228.

    [39]
    C. Horvath and W. Geiger. 2009. Directable, High-Resolution Simulation of Fire on the GPU. ACM Trans. Graph. 28, 3, Article 41 (July 2009), 8 pages.

    [40]
    Zhanpeng Huang, Guanghong Gong, and Liang Han. 2014. Physically-based modeling, simulation and rendering of fire for computer animation. Multimedia Tools and Applications 71, 3 (01 Aug 2014), 1283–1309.

    [41]
    T. Ijiri, S. Owada, and T. Igarashi. 2006. Seamless Integration of Initial Sketching and Subsequent Detail Editing in Flower Modeling. Comp. Graph. Forum 25, 3 (2006), 617–624.

    [42]
    R. J. Innes. 2013. Fire regimes of Alaskan tundra communities. www.fs.usda.gov/database/feis/fire_regimes/AK_tundra/all.html. Accessed: 2024-04-16.

    [43]
    M. Jaeger and J. Teng. 2003. Tree and plant volume imaging – An introductive study towards voxelized functional landscapes. PMA (2003).

    [44]
    J.C. Jones. 1993. Predictive Calculations of the Effect of an Accidental Heat Source on a Bed of Forest Litter. Journal of Fire Sciences 11, 1 (1993), 80–86.

    [45]
    J.C. Jones. 1994. Further Calculations Regarding the Accidental Supply of Heat to a Bed of Forest Material. Journal of Fire Sciences 12, 6 (1994), 502–505.

    [46]
    J. Ka?u?ny, Y. Schreckenberg, K. Cyganik, P. Annigh?fer, S. Pirk, D. Michels, M. Cieslak, F. Assaad, B. Benes, and W. Palubicki. 2024. LAESI: Leaf Area Estimation with Synthetic Imagery. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop: Synthetic Data for Computer Vision (2024).

    [47]
    K. Kapp, J. Gain, E. Gu?rin, E. Galin, and A. Peytavie. 2020. Data-driven Authoring of Large-scale Ecosystems. ACM Trans. Graph. (2020).

    [48]
    J. Katan and L. Perez. 2021. ABWiSE v1.0: toward an agent-based approach to simulating wildfire spread. Natural Hazards and Earth System Sciences 21, 10 (2021), 3141–3160.

    [49]
    A. Lamorlette and N. Foster. 2002. Structural Modeling of Flames for a Production Environment. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (San Antonio, Texas) (SIGGRAPH ’02). ACM, New York, NY, USA, 729–735.

    [50]
    B. Lane and P. Prusinkiewicz. 2002. Generating Spatial Distributions for Multilevel Models of Plant Communities. Graphics Interface (2002), 69–80.

    [51]
    M. J. Lawes, A. Richards, J. Dathe, and J. J. Midgley. 2011. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 212, 12 (2011), 2057–2069.

    [52]
    B. Li, J. Ka?u?ny, J. Klein, D. L. Michels, W. Pa?ubicki, B. Benes, and S. Pirk. 2021. Learning to Reconstruct Botanical Trees from Single Images. ACM Trans. Graph. 40, 6, Article 231 (12 2021).

    [53]
    B Li, J. Klein, D. L. Michels, B. Benes, S. Pirk, and W. Palubicki. 2023. Rhizomorph: The Coordinated Function of Shoots and Roots. ACM Trans. Graph. 42, 4 (8 2023).

    [54]
    B. Lintermann and O. Deussen. 1999. Interactive Modeling of Plants. IEEE Comput. Graph. Appl. 19, 1 (Jan. 1999), 56–65.

    [55]
    S. Liu, T. An, Z. Gong, and I. Hagiwara. 2012. Physically Based Simulation of Solid Objects Burning. Springer Berlin Heidelberg, Berlin, Heidelberg, 110–120.

    [56]
    Yanchao Liu, Jianwei Guo, Bedrich Benes, Oliver Deussen, Xiaopeng Zhang, and Hui Huang. 2021. TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction. ACM Trans. Graph. 40, 6, Article 232 (dec 2021), 16 pages.

    [57]
    Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. 2011. Texturelobes for Tree Modelling. ACM Trans. Graph. 30, 4, Article 53 (2011), 10 pages.

    [58]
    Y. Lizhong, C. Xiaojun, Z. Xiaodong, and F. Weicheng. 2002. A modified model of pyrolysis for charring materials in fire. Int. J. Eng. Sci. 40, 9 (2002), 1011–1021.

    [59]
    S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. 2012. TreeSketch: interactive procedural modeling of trees on a tablet. In Proc. of the Intl. Symp. on SBIM. 107–120.

    [60]
    F. Maggioli, J. Klein, T. H?drich, E. Rodol?, W. Pa?ubicki, S. Pirk, and D. L. Michels. 2023. A Physically-inspired Approach to the Simulation of Plant Wilting. In SIGGRAPH Asia 2023 Conference Papers. ACM, New York, NY, USA, Article 66, 8 pages.

    [61]
    M. Makowski, T. H?drich, J. Scheffczyk, D. L. Michels, S. Pirk, and W. Pa?ubicki. 2019. Synthetic Silviculture: Multi-Scale Modeling of Plant Ecosystems. ACM Trans. Graph. 38, 4, Article 131 (2019), 14 pages.

    [62]
    J. Mandel, A. Kochanski, M. Vejmelka, and J. Beezley. 2014. Data Assimilation of Satellite Fire Detection in Coupled Atmosphere-Fire Simulation by WRF-SFIRE. (10 2014).

    [63]
    Samuel L. Manzello, Alexander Maranghides, John R. Shields, William E. Mell, Yoshihiko Hayashi, and Daisaku Nii. 2009. Mass and size distribution of firebrands generated from burning Korean pine (Pinus koraiensis) trees. Fire and Materials 33, 1 (2009), 21–31.

    [64]
    M. M. Masinda, L. Sun, G. Wang, and T. Hu. 2020. Moisture content thresholds for ignition and rate of fire spread for various dead fuels in northeast forest ecosystems of China. Journal of Forestry Research (05 Jun 2020).

    [65]
    S. McAllister, J.Y. Chen, and A.C. Fernandez-Pello. 2011. Fundamentals of Combustion Processes. Springer New York.

    [66]
    Kevin McGrattan, Randall McDermott, Jason Floyd, Simo Hostikka, Glenn Forney, and Howard Baum. 2012. Computational fluid dynamics modelling of fire. International Journal of Computational Fluid Dynamics 26, 6–8 (2012), 349–361.

    [67]
    Z. Melek and J. Keyser. 2002. Interactive simulation of fire. Pacific Graphics (2002), 431–432.

    [68]
    William Mell, Mary Ann Jenkins, Jim Gould, and Phil Cheney. 2007. A physics-based approach to modelling grassland fires. International Journal of Wildland Fire 16, 1 (2007), 1–22.

    [69]
    H. Mendoza, A. Brown, and A. Ricks. 2019. Modeling High Heat Flux Combustion of Coniferous Trees Using Chemically Reacting Lagrangian Particles (WSSCI Fall Technical Meeting of the Western States Section of the Combustion Institute).

    [70]
    S. Monedero, J. Ramirez, D. Molina-Terr?n, and A. Cardil. 2017. Simulating wildfires backwards in time from the final fire perimeter in point-functional fire models. Environmental Modelling & Software 92 (2017), 163–168.

    [71]
    R. M?ch and P. Prusinkiewicz. 1996. Visual models of plants interacting with their environment. In Proc. of SIGGRAPH. ACM, 397–410.

    [72]
    B. Neubert, T. Franken, and O. Deussen. 2007. Approximate Image-based Tree-modeling Using Particle Flows. ACM Trans. Graph. 26, 3, Article 88 (2007).

    [73]
    B. Neubert, S. Pirk, O. Deussen, and C. Dachsbacher. 2011. Improved Model- and View-Dependent Pruning of Large Botanical Scenes. Comp. Graph. Forum 30, 6 (2011), 1708–1718.

    [74]
    D. Q. Nguyen, R. Fedkiw, and H. W. Jensen. 2002. Physically Based Modeling and Animation of Fire. ACM Trans. Graph. 21, 3 (2002), 721–728.

    [75]
    D. Q. Nguyen, R. P. Fedkiw, and M. Kang. 2001. A Boundary Condition Capturing Method for Incompressible Flame Discontinuities. J. Comput. Phys. 172, 1 (2001), 71–98.

    [76]
    Michael B. Nielsen, Morten Bojsen-Hansen, Konstantinos Stamatelos, and Robert Bridson. 2022. Physics-Based Combustion Simulation. ACM Trans. Graph. 41, 5, Article 176 (may 2022), 21 pages.

    [77]
    T. Niese, S. Pirk, M. Albrecht, B. Benes, and O. Deussen. 2022. Procedural Urban Forestry. ACM Transaction on Graphics 41, 1 (2022).

    [78]
    M. Okabe, S. Owada, and T. Igarashi. 2007. Interactive Design of Botanical Trees Using Freehand Sketches and Example-based Editing. In ACM SIGGRAPH Courses (San Diego, California). ACM, Article 26.

    [79]
    P. E. Oppenheimer. 1986. Real time design and animation of fractal plants and trees. Proc. of SIGGRAPH 20, 4 (1986), 55–64.

    [80]
    W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. M?ch, and P. Prusinkiewicz. 2009. Self-organizing Tree Models for Image Synthesis. ACM Transactions on Graphics 28, 3, Article 58 (2009), 58:1–58:10 pages.

    [81]
    Wojtek Pa?ubicki, Mi?osz Makowski, Weronika Gajda, Torsten H?drich, Dominik L. Michels, and S?ren Pirk. 2022. Ecoclimates: Climate-response Modeling of Vegetation. ACM Trans. Graph. 41, 4, Article 155 (July 2022), 19 pages.

    [82]
    Z. Pan and D. Manocha. 2017. Efficient Solver for Spacetime Control of Smoke. ACM Trans. Graph. 36, 5, Article 162 (July 2017), 13 pages.

    [83]
    A. Paris, E. Galin, A. Peytavie, E. Gu?rin, and O. Argudo. 2019. Desertscapes Simulation. CGF 38, 7 (2019).

    [84]
    E. Pastor, L. Z?rate, E. Planas, and J. Arnaldos. 2003. Mathematical models and calculation systems for the study of wildland fire behaviour. Progress in Energy and Combustion Science 29, 2 (2003), 139–153.

    [85]
    W. Pa?ubicki, A. Kokosza, and A. Burian. 2019. Formal description of plant morphogenesis. Journal of Experimental Botany 70, 14 (07 2019), 3601–3613.

    [86]
    V. Pegoraro and S. G. Parker. 2006. Physically-Based Realistic Fire Rendering. In Eurographics Workshop on Natural Phenomena. The Eurographics Association.

    [87]
    A. Peytavie, T. Dupont, E. Gu?rin, Y. Cortial, B. Benes, J. Gain, and E. Galin. 2019. Procedural Riverscapes. CGF 38, 7 (2019), 35–46.

    [88]
    Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, USA.

    [89]
    S?ren Pirk, Micha? Jarz?bek, Torsten H?drich, Dominik L. Michels, and Wojciech Palubicki. 2017. Interactive Wood Combustion for Botanical Tree Models. ACM Trans. Graph. 36, 6, Article 197 (2017).

    [90]
    S?ren Pirk, Till Niese, Oliver Deussen, and Boris Neubert. 2012a. Capturing and Animating the Morphogenesis of Polygonal Tree Models. ACM Trans. Graph. 31, 6, Article 169 (2012), 169:1–169:10 pages.

    [91]
    S. Pirk, T. Niese, T. H?drich, B. Benes, and O. Deussen. 2014. Windy Trees: Computing Stress Response for Developmental Tree Models. ACM Trans. Graph. 33, 6, Article 204 (2014), 11 pages.

    [92]
    S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. M?ch, B. Benes, and O. Deussen. 2012b. Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. 31, 4, Article 50 (2012), 10 pages.

    [93]
    P. Prusinkiewicz. 1986. Graphical applications of L-systems. In Proc. on Graph. Interf. 247–253.

    [94]
    L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B. Kang. 2006. Image-Based Plant Modeling. ACM Trans. Graph. 25, 3 (2006), 599–604.

    [95]
    E. Quigley, Y. Yu, J. Huang, W. Lin, and R. Fedkiw. 2018. Real-Time Interactive Tree Animation. 24, 5 (2018), 1717–1727.

    [96]
    N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw. 2003. Smoke Simulation for Large Scale Phenomena. ACM Trans. Graph. 22, 3 (July 2003), 703–707.

    [97]
    G. D. Richards. 1990. An elliptical growth model of forest fire fronts and its numerical solution. Internat. J. Numer. Methods Engrg. 30, 6 (1990), 1163–1179.

    [98]
    A. Runions, B. Lane, and P. Prusinkiewicz. 2007. Modeling Trees with a Space Colonization Algorithm. EG Nat. Phenom. (2007), 63–70.

    [99]
    L. Schiller and Z Naumann. 1935. A Drag Coefficient Correlation. VDI Zeitung 77 (1935), 318–320.

    [100]
    D. W. Schwilk. 2003. Flammability Is a Niche Construction Trait: Canopy Architecture Affects Fire Intensity. The American Naturalist 162, 6 (2003), 725–733.

    [101]
    Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008. An unconditionally stable MacCormack method. Journal of Scientific Computing 35 (2008), 350–371.

    [102]
    H. Shao, T. Kugelstadt, T. H?drich, W. Pa?ubicki, J. Bender, S. Pirk, and D. L. Michels. 2021. Accurately Solving Rod Dynamics with Graph Learning. In NeurIPS.

    [103]
    Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., USA, 121–128.

    [104]
    O. Stava, S. Pirk, J. Kratt, B. Chen, R. M?ch, O. Deussen, and B. Benes. 2014. Inverse Procedural Modelling of Trees. Computer Graphics Forum (2014), n/a-n/a.

    [105]
    A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for Phase-change and Varied Materials. ACM Trans. Graph. 33, 4, Article 138 (2014), 11 pages.

    [106]
    P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. 2008. Single Image Tree Modeling. ACM Trans. Graph. 27, 5, Article 108 (2008), 7 pages.

    [107]
    Ali Tohidi, Nigel Kaye, and William Bridges. 2015. Statistical description of firebrand size and shape distribution from coniferous trees for use in Metropolis Monte Carlo simulations of firebrand flight distance. Fire Safety Journal 77 (2015), 21–35.

    [108]
    Marcos Vanella, Kevin McGrattan, Randall McDermott, Glenn Forney, William Mell, Emanuele Gissi, and Paolo Fiorucci. 2021. A Multi-Fidelity Framework for Wildland Fire Behavior Simulations over Complex Terrain. Atmosphere 12, 2 (2021).

    [109]
    Ulysse Vimont, James Gain, Maud Lastic, Guillaume Cordonnier, Babatunde Abiodun, and Marie-Paule Cani. 2020. Interactive Meso-scale Simulation of Skyscapes. CGF 39, 2 (2020), 585–596.

    [110]
    S. Whitaker. 1972. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE Journal 18, 2 (1972), 361–371.

    [111]
    J. Wither, F. Boudon, M.-P. Cani, and C. Godin. 2009. Structure from silhouettes: a new paradigm for fast sketch-based design of trees. 28, 2 (2009), 541–550.

    [112]
    S.-K. Wong and K.-C. Chen. 2015. A Procedural Approach to Modelling Virtual Climbing Plants With Tendrils. Comput. Graph. Forum (2015).

    [113]
    H. Xu, N. Gossett, and B. Chen. 2007. Knowledge and heuristic-based modeling of laser-scanned trees. ACM Transactions on Graphics 26, 4 (2007), Article 19, 13 pages.

    [114]
    Y. Zhao, X. Wei, Z. Fan, A. Kaufman, and H. Qin. 2003. Voxels on fire [computer animation]. In IEEE Visualization, 2003. VIS 2003. 271–278.

    [115]
    X. Zhou, B. Li, B. Benes, S. Fei, and S. Pirk. 2023. DeepTree: Modeling Trees with Situated Latents. IEEE TVCG (2023), 1–14.

    [116]
    P. Zylstra. 2021. Linking fire behaviour and its ecological effects to plant traits, using FRaME in R. Methods in Ecology and Evolution 12, 8 (2021), 1365–1378.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org