“ScalarFlow: a large-scale volumetric data set of real-world scalar transport flows for computer animation and machine learning” by Eckert, Um and Thuerey – ACM SIGGRAPH HISTORY ARCHIVES

“ScalarFlow: a large-scale volumetric data set of real-world scalar transport flows for computer animation and machine learning” by Eckert, Um and Thuerey

  • 2019 SA Technical Papers_Eckert_ScalarFlow: a large-scale volumetric data set of real-world scalar transport flows for computer animation and machine learning

Conference:


Type(s):


Title:

    ScalarFlow: a large-scale volumetric data set of real-world scalar transport flows for computer animation and machine learning

Session/Category Title:   Data-Driven Dynamics


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    In this paper, we present ScalarFlow, a first large-scale data set of reconstructions of real-world smoke plumes. In addition, we propose a framework for accurate physics-based reconstructions from a small number of video streams. Central components of our framework are a novel estimation of unseen inflow regions and an efficient optimization scheme constrained by a simulation to capture real-world fluids. Our data set includes a large number of complex natural buoyancy-driven flows. The flows transition to turbulence and contain observable scalar transport processes. As such, the ScalarFlow data set is tailored towards computer graphics, vision, and learning applications. The published data set contains volumetric reconstructions of velocity and density as well as the corresponding input image sequences with calibration data, code, and instructions how to reproduce the commodity hardware capture setup. We further demonstrate one of the many potential applications: a first perceptual evaluation study, which reveals that the complexity of the reconstructed flows would require large simulation resolutions for regular solvers in order to recreate at least parts of the natural complexity contained in the captured data.

References:


    1. Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici, Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. 2016. Youtube-8m: A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675 (2016).Google Scholar
    2. Alexis Angelidis, Fabrice Neyret, Karan Singh, and Derek Nowrouzezahrai. 2006. A Controllable, Fast and Stable Basis for Vortex Based Smoke Simulation. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’06). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 25–32.Google ScholarDigital Library
    3. Bradley Atcheson, Wolfgang Heidrich, and Ivo Ihrke. 2009. An evaluation of optical flow algorithms for background oriented schlieren imaging. Experiments in Fluids 46, 3 (01 Mar 2009), 467–476. Google ScholarCross Ref
    4. Bradley Atcheson, Ivo Ihrke, Wolfgang Heidrich, Art Tevs, Derek Bradley, Marcus Magnor, and Hans-Peter Seidel. 2008. Time-resolved 3d capture of non-stationary gas flows. ACM Trans. Graph. 27, 5 (2008), 132.Google ScholarDigital Library
    5. V Avsarkisov, S Hoyas, M Oberlack, and Jose Pedro Garcia-Galache. 2014. Turbulent plane Couette flow at moderately high Reynolds number. Journal of Fluid Mechanics 751 (2014), R1. Google ScholarCross Ref
    6. Robert Bridson. 2015. Fluid Simulation for Computer Graphics. CRC Press.Google ScholarDigital Library
    7. Kirsten Cater, Alan Chalmers, and Patrick Ledda. 2002. Selective Quality Rendering by Exploiting Human Inattentional Blindness: Looking but Not Seeing. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST ’02). ACM, New York, NY, USA, 17–24. Google ScholarDigital Library
    8. Antonin Chambolle and Thomas Pock. 2011. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of mathematical imaging and vision 40, 1 (2011), 120–145.Google ScholarDigital Library
    9. Mengyu Chu and Nils Thuerey. 2017. Data-Driven Synthesis of Smoke Flows with CNN-Based Feature Descriptors. ACM Trans. Graph. 36, 4 (July 2017), 69:1–69:14. Google ScholarDigital Library
    10. Cathal Cummins, Madeleine Seale, Alice Macente, Daniele Certini, Enrico Mastropaolo, Ignazio Maria Viola, and Naomi Nakayama. 2018. A separated vortex ring underlies the flight of the dandelion. Nature 562, 7727 (2018), 414.Google Scholar
    11. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition. 248–255. Google ScholarCross Ref
    12. Marie-Lena Eckert, Wolfgang Heidrich, and Nils Thürey. 2018. Coupled Fluid Density and Motion from Single Views. Comput. Graph. Forum 37 (2018), 47–58.Google ScholarCross Ref
    13. Gerrit E Elsinga, Fulvio Scarano, Bernhard Wieneke, and Bas W van Oudheusden. 2006. Tomographic particle image velocimetry. Experiments in fluids 41, 6 (2006), 933–947.Google Scholar
    14. Gustav Theodor Fechner. 1860. Elemente der Psychophysik. Breitkopf & Härtel, Leipzig.Google Scholar
    15. Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001a. Visual Simulation of Smoke. In Proceedings of SIGGRAPH 2001 (Computer Graphics Proceedings, Annual Conference Series), Eugene Fiume (Ed.). ACM, ACM Press / ACM SIGGRAPH, 15–22.Google ScholarDigital Library
    16. Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001b. Visual simulation of smoke. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, 15–22.Google ScholarDigital Library
    17. James Gregson, Ivo Ihrke, Nils Thuerey, and Wolfgang Heidrich. 2014. From capture to simulation: connecting forward and inverse problems in fluids. ACM Trans. Graph. 33, 4 (2014), 139.Google ScholarDigital Library
    18. Francis H Harlow and J Eddie Welch. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The physics of fluids 8, 12 (1965), 2182–2189.Google Scholar
    19. Samuel W Hasinoff and Kiriakos N Kutulakos. 2007. Photo-consistent reconstruction of semitransparent scenes by density-sheet decomposition. IEEE transactions on pattern analysis and machine intelligence 29, 5 (2007), 870–885.Google ScholarDigital Library
    20. Tim Hawkins, Per Einarsson, and Paul Debevec. 2005. Acquisition of time-varying participating media. ACM Trans. Graph. 24, 3 (2005), 812–815.Google ScholarDigital Library
    21. Ludovic Hoyet, Kenneth Ryall, Katja Zibrek, Hwangpil Park, Jehee Lee, Jessica Hodgins, and Carol O’Sullivan. 2013. Evaluating the Distinctiveness and Attractiveness of Human Motions on Realistic Virtual Bodies. ACM Trans. Graph. 32, 6 (Nov. 2013), 204:1–204:11. Google ScholarDigital Library
    22. David R. Hunter. 2004. MM algorithms for generalized Bradley-Terry models. The Annals of Statistics 32, 1 (Feb. 2004), 384–406. Google ScholarCross Ref
    23. Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. 2014. SPH Fluids in Computer Graphics. In Eurographics 2014 – State of the Art Reports. Eurographics Association, Strasbourg, France, 21–42. Google ScholarCross Ref
    24. Ivo Ihrke and Marcus Magnor. 2004. Image-based tomographic reconstruction of flames. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 365–373.Google Scholar
    25. Ivo Ihrke and Marcus Magnor. 2006. Adaptive grid optical tomography. Graphical Models 68, 5–6 (2006), 484–495.Google ScholarDigital Library
    26. Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle. 2016. The material point method for simulating continuum materials. In ACM SIGGRAPH 2016 Courses. ACM, 24.Google ScholarDigital Library
    27. Janet Kavandi, James Callis, Martin Gouterman, Gamal Khalil, Daniel Wright, Edmond Green, David Burns, and Blair McLachlan. 1990. Luminescent barometry in wind tunnels. Review of Scientific Instruments 61, 11 (1990), 3340–3347.Google ScholarCross Ref
    28. Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara Solenthaler. 2019. Deep Fluids: A Generative Network for Parameterized Fluid Simulations. Computer Graphics Forum 38, 2 (May 2019), 59–70. Google ScholarCross Ref
    29. Byungmoon Kim, Yingjie Liu, Ignacio Llamas, and Jarek Rossignac. 2005. FlowFixer: Using BFECC for Fluid Simulation. In Proceedings of the First Eurographics conference on Natural Phenomena. 51–56.Google ScholarDigital Library
    30. Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet turbulence for fluid simulation. ACM Trans. Graph. 27, 3 (2008), 50.Google ScholarDigital Library
    31. Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and temples: Benchmarking large-scale scene reconstruction. ACM Trans. Graph. 36, 4 (2017), 78.Google ScholarDigital Library
    32. L’ubor Ladický, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross. 2015. Data-driven fluid simulations using regression forests. ACM Trans. Graph. 34, 6 (2015), 1–9.Google ScholarDigital Library
    33. Yi Li, Eric Perlman, Minping Wan, Yunke Yang, Charles Meneveau, Randal Burns, Shiyi Chen, Alexander Szalay, and Gregory Eyink. 2008. A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. Journal of Turbulence 9 (2008), N31.Google ScholarCross Ref
    34. Pingchuan Ma, Yunsheng Tian, Zherong Pan, Bo Ren, and Dinesh Manocha. 2018. Fluid directed rigid body control using deep reinforcement learning. ACM Trans. Graph. 37, 4 (2018), 96.Google ScholarDigital Library
    35. Belen Masia, Sandra Agustin, Roland W. Fleming, Olga Sorkine, and Diego Gutierrez. 2009. Evaluation of Reverse Tone Mapping Through Varying Exposure Conditions. ACM Trans. Graph. 28, 5, Article 160 (Dec. 2009), 8 pages. Google ScholarDigital Library
    36. A. McAdams, E. Sifakis, and J. Teran. 2010. A Parallel Multigrid Poisson Solver for Fluids Simulation on Large Grids. In Symposium on Computer Animation (SCA ’10). 65–74.Google Scholar
    37. Enric Meinhardt-Llopis, Javier Sánchez Pérez, and Daniel Kondermann. 2013. Hornschunck optical flow with a multi-scale strategy. Image Processing on line 2013 (2013), 151–172.Google Scholar
    38. Parviz Moin, Kyle Squires, W Cabot, and Sangsan Lee. 1991. A dynamic subgrid-scale model for compressible turbulence and scalar transport. Physics of Fluids A: Fluid Dynamics 3, 11 (1991), 2746–2757.Google ScholarCross Ref
    39. P. Morris, A. Narracott, H. von Tengg-Kobligk, D. Soto, S. Hsiao, A. Lungu, et al. 2016. Computational fluid dynamics modelling in cardiovascular medicine. Heart 102, 1 (2016), 18–28.Google ScholarCross Ref
    40. Hyon Kook Myong and Nobuhide Kasagi. 1990. A new approach to the improvement of k-ε turbulence model for wall-bounded shear flows. JSME International Journal 33, 1 (1990), 63–72.Google Scholar
    41. Michael B Nielsen, Brian B Christensen, Nafees Bin Zafar, Doug Roble, and Ken Museth. 2009. Guiding of smoke animations through variational coupling of simulations at different resolutions. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 217–226.Google ScholarDigital Library
    42. Makoto Okabe, Yoshinori Dobashi, Ken Anjyo, and Rikio Onai. 2015. Fluid volume modeling from sparse multi-view images by appearance transfer. ACM Trans. Graph. 34, 4 (2015), 93.Google ScholarDigital Library
    43. Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hujun Bao. 2013. Interactive localized liquid motion editing. ACM Trans. Graph. 32, 6 (2013), 184.Google ScholarDigital Library
    44. Zherong Pan and Dinesh Manocha. 2017. Efficient solver for spacetime control of smoke. ACM Trans. Graph. 36, 5 (2017), 162.Google ScholarDigital Library
    45. Neal Parikh, Stephen Boyd, et al. 2014. Proximal algorithms. Foundations and Trends® in Optimization 1, 3 (2014), 127–239.Google Scholar
    46. Syuhei Sato, Yoshinori Dobashi, Theodore Kim, and Tomoyuki Nishita. 2018. Example-based turbulence style transfer. ACM Trans. Graph. 37, 4 (2018), 84.Google ScholarDigital Library
    47. Philipp Schlatter and Ramis Orlu. 2010. Assessment of direct numerical simulation data of turbulent boundary layers. Journal of Fluid Mechanics 659 (2010), 116–126.Google ScholarCross Ref
    48. Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008. An unconditionally stable MacCormack method. Journal of Scientific Computing 35, 2–3 (2008), 350–371.Google ScholarDigital Library
    49. Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A Vortex Particle Method for Smoke, Water and Explosions. ACM Trans. Graph. 24, 3 (July 2005), 910–914. Google ScholarDigital Library
    50. Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid: A Sparse Paged Grid structure applied to adaptive smoke simulation. ACM Trans. Graph. 33, 6 (2014), 205.Google ScholarDigital Library
    51. Lin Shi and Yizhou Yu. 2005. Taming Liquids for Rapidly Changing Targets. In Proc. Symposium on Computer Animation. 229–236.Google ScholarDigital Library
    52. Jos Stam. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 121–128.Google ScholarDigital Library
    53. Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. 2013. A Material Point Method for Snow Simulation. ACM Trans. Graph. 32, 4 (2013), article 102.Google ScholarDigital Library
    54. Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár, Chuyuan Fu, Joseph Teran, Chenfanfu Jiang, and Ken Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. 36, 4 (2017), 105.Google ScholarDigital Library
    55. Nils Thuerey and Tobias Pfaff. 2018. MantaFlow. http://mantaflow.com.Google Scholar
    56. Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. 2017. Accelerating Eulerian Fluid Simulation With Convolutional Networks. 3424–3433.Google Scholar
    57. Kiwon Um, Xiangyu Hu, and Nils Thuerey. 2017. Perceptual evaluation of liquid simulation methods. ACM Trans. Graph. 36, 4 (2017), 143.Google ScholarDigital Library
    58. Huamin Wang, Miao Liao, Qing Zhang, Ruigang Yang, and Greg Turk. 2009. Physically guided liquid surface modeling from videos. ACM Trans. Graph. 28, 3 (2009), 90.Google ScholarDigital Library
    59. Steffen Weißmann and Ulrich Pinkall. 2010. Filament-based Smoke with Vortex Shedding and Variational Reconnection. ACM Trans. Graph. 29, 4, Article 115 (July 2010), 12 pages. Google ScholarDigital Library
    60. Stephan Wenger, Dirk Lorenz, and Marcus Magnor. 2013. Fast Image-Based Modeling of Astronomical Nebulae. Computer Graphics Forum 32, 7 (2013), 93–100.Google ScholarCross Ref
    61. You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. 2018. tempoGAN: A Temporally Coherent, Volumetric GAN for Super-Resolution Fluid Flow. ACM Trans. Graph. 37, 4 (July 2018), 95:1–95:15. Google ScholarDigital Library
    62. Jinhui Xiong, Ramzi Idoughi, Andres A Aguirre-Pablo, Abdulrahman B Aljedaani, Xiong Dun, Qiang Fu, Sigurdur T Thoroddsen, and Wolfgang Heidrich. 2017. Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging. ACM Trans. Graph. 36, 4 (2017), 36.Google ScholarDigital Library
    63. Alireza Yazdani, Maziar Raissi, and George Karniadakis. 2018. Hidden Fluid Mechanics: Navier-Stokes Informed Deep Learning from the Passive Scalar Transport. Bulletin of the American Physical Society 63 (2018).Google Scholar
    64. Guangming Zang, Mohamed Aly, Ramzi Idoughi, Peter Wonka, and Wolfgang Heidrich. 2018a. Super-Resolution and Sparse View CT Reconstruction. In Proceedings of the European Conference on Computer Vision (ECCV). 137–153.Google ScholarDigital Library
    65. Guangming Zang, Ramzi Idouchi, Ran Tao, Gilles Lubineau, Peter Wonka, and Wolfgang Heidrich. 2018b. Space-time tomography for continuously deforming objects. ACM Trans. Graph. 37, 4 (2018), 100.Google ScholarDigital Library
    66. Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. 2018. An Advection-Reflection Solver for Detail-Preserving Fluid Simulation. ACM Trans. Graph. 37, 4 (July 2018), 85:1–85:8. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org