“Scalable appearance filtering for complex lighting effects” – ACM SIGGRAPH HISTORY ARCHIVES

“Scalable appearance filtering for complex lighting effects”

  • 2018 SA Technical Papers_Gamboa_Scalable appearance filtering for complex lighting effects

Conference:


Type(s):


Title:

    Scalable appearance filtering for complex lighting effects

Session/Category Title:   Rendering & reflectance


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Realistic rendering with materials that exhibit high-frequency spatial variation remains a challenge, as eliminating spatial and temporal aliasing requires prohibitively high sampling rates. Recent work has made the problem more tractable, however existing methods remain prohibitively expensive when using large environmental lights and/or (correctly filtered) global illumination. We present an appearance model with explicit high-frequency micro-normal variation, and a filtering approach that scales to multi-dimensional shading integrals. By combining a novel and compact half-vector histogram scheme with a directional basis expansion, we accurately compute the integral of filtered high-frequency reflectance over large lights with angularly varying emission. Our approach is scalable, rendering images indistinguishable from ground truth at over 10× the speed of the state-of-the-art and with only 15% the memory footprint. When filtering appearance with global illumination, we outperform the state-of-the-art by ~30×.

References:


    1. Asen Atanasov and Vladimir Koylazov. 2016. A Practical Stochastic Algorithm for Rendering Mirror-like Flakes. In ACM SIGGRAPH 2016 Talks (SIGGRAPH ’16). ACM, New York, NY, USA, Article 67, 2 pages. Google ScholarDigital Library
    2. Mahdi Bagher, Cyril Soler, and Nicolas Holzschuch. 2012. Accurate fitting of measured reflectances using a Shifted Gamma micro-facet distribution. Computer Graphics Forum 31, 4 (June 2012). Google ScholarDigital Library
    3. Mahdi M. Bagher, John Snyder, and Derek Nowrouzezahrai. 2016. A Non-Parametric Factor Microfacet Model for Isotropic BRDFs. ACM Transactions on Graphics 36, 6 (Aug. 2016). Google ScholarDigital Library
    4. P. Beckmann and A. Spizzichino. 1963. The Scattering of Electromagnetic Waves from Rough Surfaces. New York: Pergamon (1963).Google Scholar
    5. Laurent Belcour, Guofu Xie, Christophe Hery, Mark Meyer, Wojciech Jarosz, and Derek Nowrouzezahrai. 2018. Integrating Clipped Spherical Harmonics Expansions. ACM Trans. Graph. 37, 2, Article 19 (March 2018), 12 pages. Google ScholarDigital Library
    6. Laurent Belcour, Ling-Qi Yan, Ravi Ramamoorthi, and Derek Nowrouzezahrai. 2017. Antialiasing Complex Global Illumination Effects in Path-Space. ACM Trans. Graph. 36, 1, Article 75b (Jan. 2017). Google ScholarDigital Library
    7. Robert L. Cook and Tony DeRose. 2005. Wavelet noise. Transactions on Graphics 24, 3 (July 2005), 803–811. Google ScholarDigital Library
    8. R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics. ACM Trans. Graph. 1, 1 (Jan. 1982), 7–24. Google ScholarDigital Library
    9. Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, Fabrice Neyret, and Victor Ostromoukhov. 2013. Linear efficient antialiased displacement and reflectance mapping. ACM Transactions on Graphics 32, 6 (Nov. 2013), 1–11. Google ScholarDigital Library
    10. Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, and Victor Ostromoukhov. 2015. Extracting Microfacet-based BRDF Parameters from Arbitrary Materials with Power Iterations. Computer Graphics Forum (2015), 10. Google ScholarDigital Library
    11. Charles Han, Bo Sun, Ravi Ramamoorthi, and Eitan Grinspun. 2007. Frequency Domain Normal Map Filtering. ACM Trans. Graph. 26, 3, Article 28 (July 2007). Google ScholarDigital Library
    12. Eric Heitz, Stephen Hill, and Morgan McGuire. 2018. Combining Analytic Direct Illumination and Stochastic Shadows. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D ’18). ACM, New York, NY, USA, Article 2, 11 pages. Google ScholarDigital Library
    13. Eric Heitz, Derek Nowrouzezahrai, Pierre Poulin, and Fabrice Neyret. 2013. Filtering Color Mapped Textures and Surfaces. In ACM Siggraph Symposium on Interactive 3D Graphics and Games. ACM, New York, NY, USA. Google ScholarDigital Library
    14. Homan Igehy. 1999. Tracing Ray Differentials. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 179–186. Google ScholarDigital Library
    15. Wenzel Jakob, Miloš Hašan, Ling-Qi Yan, Jason Lawrence, Ravi Ramamoorthi, and Steve Marschner. 2014. Discrete Stochastic Microfacet Models. ACM Trans. Graph. 33, 4, Article 115 (July 2014), 10 pages. Google ScholarDigital Library
    16. Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip Dutré. 2009. Procedural noise using sparse Gabor convolution. j-TOG 28, 3, Article 54 (Aug. 2009). Google ScholarDigital Library
    17. Addy Ngan, Frédo Durand, and Wojciech Matusik. 2005. Experimental Analysis of BRDF Models. In Eurographics Workshop on Rendering. Google ScholarDigital Library
    18. Derek Nowrouzezahrai, Patricio Simari, and Eugene Fiume. 2012. Sparse Zonal Harmonic Factorization for Efficient SH Rotation. ACM Transactions on Graphics (2012). Google ScholarDigital Library
    19. Marc Olano and Dan Baker. 2010. LEAN Mapping. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D ’10). ACM, New York, NY, USA, 181–188. Google ScholarDigital Library
    20. Ken Perlin. 2002. Improving noise. Transactions on Graphics 21, 3 (July 2002), 681–682. Google ScholarDigital Library
    21. Dan Piponi. 2013. Polygon kernels for image processing. US Patent 8,400,461 B1.Google Scholar
    22. Boris Raymond, Gaël Guennebaud, and Pascal Barla. 2016. Multi-scale Rendering of Scratched Materials Using a Structured SV-BRDF Model. ACM Trans. Graph. 35, 4, Article 57 (July 2016), 11 pages. Google ScholarDigital Library
    23. Peter-Pike Sloan, Ben Luna, and John Snyder. 2005. Local, deformable precomputed radiance transfer. In SIGGRAPH. ACM, NY, USA. Google ScholarDigital Library
    24. Michael Toksvig. 2005. Mipmapping normal maps. Journal of Graphics Tools 10 3 (2005), 65–71.Google Scholar
    25. K. E. Torrance and E. M. Sparrow. 1967. Theory for Off-Specular Reflection From Roughened Surfaces*. J. Opt. Soc. Am. 57, 9 (Sep 1967), 1105–1114.Google ScholarCross Ref
    26. Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering. In Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’95). ACM, New York, NY, USA, 419–428. Google ScholarDigital Library
    27. Zdravko Velinov, Sebastian Werner, and Matthias B. Hullin. 2018. Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces. Computer Graphics Forum (2018).Google Scholar
    28. Bruce Walter. 2005. Notes on the Ward BRDF. Technical Report. Cornell Program of Computer Graphics.Google Scholar
    29. Bruce Walter, Stephen Marschner, Hongsong Li, and Keneth Torrance. 2007. Microfacet Models for Refraction through Rough Surfaces. Eurographics Symposium on Rendering (2007). Google ScholarDigital Library
    30. Jingwen Wang and Ravi Ramamoorthi. 2018. Analytic Spherical Harmonic Coefficients for Polygonal Area Lights. ACM Trans. Graph. 37, 4, Article 54 (July 2018), 11 pages. Google ScholarDigital Library
    31. Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias B. Hullin. 2017. Scratch Iridescence: Wave-optical Rendering of Diffractive Surface Structure. ACM Trans. Graph. 36, 6, Article 207 (Nov. 2017), 14 pages. Google ScholarDigital Library
    32. Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve Marschner, and Ravi Ramamoorthi. 2014. Rendering Glints on High-resolution Normal-mapped Specular Surfaces. ACM Trans. Graph. 33, 4, Article 116 (July 2014), 9 pages. Google ScholarDigital Library
    33. Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. 2016. Position-normal Distributions for Efficient Rendering of Specular Microstructure. ACM Trans. Graph. 35, 4, Article 56 (July 2016), 9 pages. Google ScholarDigital Library
    34. Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi. 2018. Rendering Specular Microgeometry with Wave Optics. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2018) 37, 4 (2018). Google ScholarDigital Library
    35. Tobias Zirr and Anton S. Kaplanyan. 2016. Real-time Rendering of Procedural Multiscale Materials. In Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D ’16). ACM, New York, NY, USA, 139–148. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org