“Rolling guidance normal filter for geometric processing” – ACM SIGGRAPH HISTORY ARCHIVES

“Rolling guidance normal filter for geometric processing”

  • 2015 SA Technical Papers_Wang_Rolling Guidance Normal Filter for Geometric Processing

Conference:


Type(s):


Title:

    Rolling guidance normal filter for geometric processing

Session/Category Title:   Geometry Processing


Presenter(s)/Author(s):



Abstract:


    3D geometric features constitute rich details of polygonal meshes. Their analysis and editing can lead to vivid appearance of shapes and better understanding of the underlying geometry for shape processing and analysis. Traditional mesh smoothing techniques mainly focus on noise filtering and they cannot distinguish different scales of features well, even mixing them up. We present an efficient method to process different scale geometric features based on a novel rolling-guidance normal filter. Given a 3D mesh, our method iteratively applies a joint bilateral filter to face normals at a specified scale, which empirically smooths small-scale geometric features while preserving large-scale features. Our method recovers the mesh from the filtered face normals by a modified Poisson-based gradient deformation that yields better surface quality than existing methods. We demonstrate the effectiveness and superiority of our method on a series of geometry processing tasks, including geometry texture removal and enhancement, coating transfer, mesh segmentation and level-of-detail meshing.

References:


    1. Adams, A., Gelfand, N., Dolson, J., and Levoy, M. 2009. Gaussian KD-trees for fast high-dimensional filtering. ACM Trans. Graph. (SIGGRAPH) 28, 3, 21:1–21:12.
    2. Adams, A., Baek, J., and Davis, M. A. 2010. Fast high-dimensional filtering using the permutohedral lattice. Comput. Graph. Forum (EG) 29, 2, 753–762.
    3. Adamson, A., and Alexa, M. 2003. Approximating and intersecting surfaces from points. In Symp. Geom. Proc., 230–239.
    4. Au, O.-C., Zheng, Y., Chen, M., Xu, P., and Tai, C.-L. 2012. Mesh segmentation with concavity-aware fields. IEEE. T. Vis. Comput. Gr. 18, 7, 1125–1134.
    5. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. (SIGGRAPH) 28, 3, 77:1–77:10.
    6. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin, D. 2013. Quad-mesh generation and processing: a survey. Comput. Graph. Forum 32, 6, 51–76.
    7. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE. T. Vis. Comput. Gr. 14, 1, 213–230.
    8. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. 2010. Polygon Mesh Processing. A K Peters/CRC Press.
    9. Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D mesh segmentation. ACM Trans. Graph. (SIGGRAPH) 28, 3, 73:1–73:12.
    10. Cho, H., Lee, H., Kang, H., and Lee, S. 2014. Bilateral texture filtering. ACM Trans. Graph. (SIGGRAPH) 33, 4, 128:1–128:8.
    11. Chuang, M., and Kazhdan, M. 2011. Interactive and anisotropic geometry processing using the screened Poisson equation. ACM Trans. Graph. (SIGGRAPH) 30, 4, 57:1–57:10.
    12. Clarenz, U., Diewald, U., and Rumpf, M. 2000. Anisotropic geometric diffusion in surface processing. In Proceedings of the conference on Visualization’00, 397–405.
    13. Crane, K., de Goes, F., Desbrun, M., and Schröder, P. 2013. Digital geometry processing with discrete exterior calculus. In ACM SIGGRAPH 2013 courses.
    14. Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In SIGGRAPH, 317–324.
    15. Ebke, H.-C., Bommes, D., Campen, M., and Kobbelt, L. 2013. QEx: robust quad mesh extraction. ACM Trans. Graph. (SIGGRAPH ASIA) 32, 6, 168:1–168:10.
    16. Ebke, H.-C., Campen, M., Bommes, D., and Kobbelt, L. 2014. Level-of-detail quad meshing. ACM Trans. Graph. (SIGGRAPH ASIA) 33, 6, 184:1–184:11.
    17. Fleishman, S., Drori, I., and Cohen-Or, D. 2003. Bilateral mesh denoising. ACM Trans. Graph. (SIGGRAPH) 22, 3, 950–953.
    18. Golovinskiy, A., and Funkhouser, T. 2008. Randomized cuts for 3D mesh analysis. ACM Trans. Graph. (SIGGRAPH ASIA) 27, 5, 145:1–145:12.
    19. Guennebaud, G., and Gross, M. 2007. Algebraic point set surfaces. ACM Trans. Graph. (SIGGRAPH) 26, 3, 23:1–23:9.
    20. Guennebaud, G., Jacob, B., et al., 2010. Eigen v3. http://eigen.tuxfamily.org.
    21. Guskov, I., Sweldens, W., and Schröder, P. 1999. Multiresolution signal processing for meshes. In SIGGRAPH, 325–334.
    22. He, L., and Schaefer, S. 2013. Mesh denoising via L0 minimization. ACM Trans. Graph. (SIGGRAPH) 32, 4, 64:1–64:8.
    23. Jones, T. R., Durand, F., and Desbrun, M. 2003. Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. (SIGGRAPH) 22, 3, 943–949.
    24. Kobbelt, L., Campagna, S., Vorsatz, J., and Seidel, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. In SIGGRAPH, 105–114.
    25. Kopf, J., Cohen, M. F., Lischinski, D., and Uyttendaele, M. 2007. Joint bilateral upsampling. ACM Trans. Graph. (SIGGRAPH) 26, 3, 96:1–96:5.
    26. Lee, K.-W., and Wang, W.-P. 2005. Feature-preserving mesh denoising via bilateral normal filtering. In Ninth International Conference on Computer Aided Design and Computer Graphics.
    27. Lévy, B., and Bonneel, N. 2013. Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In Int. Meshing Roundtable, X. Jiao and J.-C. Weill, Eds., 349–366.
    28. Nader, G., Guennebaud, G., and Mellado, N. 2014. Adaptive multi-scale analysis for point-based surface editing. Comput. Graph. Forum (PG) 33, 7, 171–179.
    29. Panozzo, D., Baran, I., Diamanti, O., and Sorkine-Hornung, O. 2013. Weighted averages on surfaces. ACM Trans. Graph. (SIGGRAPH) 32, 4, 60:1–60:12.
    30. Pauly, M., Kobbelt, L., and Gross, M. 2006. Point-based multiscale surface representation. ACM Trans. Graph. 25, 2, 177–193.
    31. Ray, N., Vallet, B., Alonso, L., and Lévy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1, 1:1–1:11.
    32. Silva, V. D., and Tenenbaum, J. B. 2002. Global versus local methods in nonlinear dimensionality reduction. In NIPS, 705–712.
    33. Solomon, J., Crane, K., Butscher, A., and Wojtan, C. 2014. A general framework for bilateral and mean shift filtering. arXiv:1405.4734 {cs.GR}.
    34. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Symp. Geom. Proc., 175–184.
    35. Subr, K., Soler, C., and Durand, F. 2009. Edge-preserving multiscale image decomposition based on local extrema. ACM Trans. Graph. (SIGGRAPH ASIA) 28, 5, 147:1–147:9.
    36. Sun, X., Rosin, P. L., Martin, R. R., and Langbein, F. C. 2007. Fast and effective feature-preserving mesh denoising. IEEE. T. Vis. Comput. Gr. 13, 5, 925–938.
    37. Sun, J., Ovsjanikov, M., and Guibas, L. 2009. A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum (SGP) 28, 5, 1383–1392.
    38. Tasdizen, T., Whitaker, R., Burchard, P., and Osher, S. 2002. Geometric surface smoothing via anisotropic diffusion of normals. In Proceedings of the conference on Visualization’02, 125–132.
    39. Taubin, G. 1995. A signal processing approach to fair surface design. In SIGGRAPH, 351–358.
    40. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In ICCV, 839–846.
    41. Vallet, B., and Lévy, B. 2008. Spectral geometry processing with manifold harmonics. Comput. Graph. Forum (EG) 27, 2, 251–260.
    42. Wang, R., Yang, Z., Liu, L., Deng, J., and Chen, F. 2014. Decoupling noise and features via weighted l1-analysis compressed sensing. ACM Trans. Graph. 33, 2, 18:1–18:12.
    43. Wei, M., Yu, J., Pang, W.-M., Wang, J., Qin, J., Liu, L., and Heng, P.-A. 2015. Bi-normal filtering for mesh denoising. IEEE. T. Vis. Comput. Gr. 21, 1, 43–55.
    44. Xu, L., Yan, Q., Xia, Y., and Jia, J. 2012. Structure extraction from texture via relative total variation. ACM Trans. Graph. (SIGGRAPH ASIA) 31, 6, 139:1–139:10.
    45. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with Poisson-based gradient field manipulation. ACM Trans. Graph. (SIGGRAPH) 23, 3, 644–651.
    46. Zhang, H., Van Kaick, O., and Dyer, R. 2010. Spectral mesh processing. Comput. Graph. Forum 29, 6, 1865–1894.
    47. Zhang, J., Zheng, J., Wu, C., and Cai, J. 2012. Variational mesh decomposition. ACM Trans. Graph. 31, 3, 21:1–21:14.
    48. Zhang, Q., Shen, X., Xu, L., and Jia, J. 2014. Rolling guidance filter. In ECCV, 815–830.
    49. Zhang, H., Wu, C., Zhang, J., and Deng, J. 2015. Variational mesh denoising using total variation and piecewise constant function space. IEEE. T. Vis. Comput. Gr. 21, 7.
    50. Zheng, Y., Fu, H., Au, O. K.-C., and Tai, C.-L. 2011. Bilateral normal filtering for mesh denoising. IEEE. T. Vis. Comput. Gr. 17, 10, 1521–1530.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org