“Residual ratio tracking for estimating attenuation in participating media” by Novák, Selle and Jarosz – ACM SIGGRAPH HISTORY ARCHIVES

“Residual ratio tracking for estimating attenuation in participating media” by Novák, Selle and Jarosz

  • 2014 SA Technical Papers Novak_Residual Ratio Tracking for Estimating Attenuation in Participating Media

Conference:


Type(s):


Title:

    Residual ratio tracking for estimating attenuation in participating media

Session/Category Title:   Light In, Light Out


Presenter(s)/Author(s):



Abstract:


    Evaluating transmittance within participating media is a fundamental operation required by many light transport algorithms. We present ratio tracking and residual tracking, two complementary techniques that can be combined into an efficient, unbiased estimator for evaluating transmittance in complex heterogeneous media. In comparison to current approaches, our new estimator is unbiased, yields high efficiency, gracefully handles media with wavelength dependent extinction, and bridges the gap between closed form solutions and purely numerical, unbiased approaches. A key feature of ratio tracking is its ability to handle negative densities. This in turn enables us to separate the main part of the transmittance function, handle it analytically, and numerically estimate only the residual transmittance. In addition to proving the unbiasedness of our estimators, we perform an extensive empirical analysis to reveal parameters that lead to high efficiency. Finally, we describe how to integrate the new techniques into a production path tracer and demonstrate their benefits over traditional unbiased estimators.

References:


    1. Amanatides, J., and Woo, A. 1987. A fast voxel traversal algorithm for ray tracing. In Eurographics ’87, 3–10.
    2. Brown, F. B., and Martin, W. R. 2003. Direct sampling of Monte Carlo flight paths in media with continuously varying cross-sections. In Proc. of ANS Mathematics & Computation Topical Meeting, 6–11.
    3. Carter, L. L., Cashwell, E. D., and Taylor, W. M. 1972. Monte Carlo sampling with continuously varying cross sections along flight paths. Nuclear Science and Engineering 48, 4, 403–411.Cross Ref
    4. Cerezo, E., Pérez, F., Pueyo, X., Seron, F. J., and Sillion, F. X. 2005. A survey on participating media rendering techniques. The Visual Computer 21, 5, 303–328.
    5. Chandrasekhar, S. 1960. Radiative Transfer. Dover Publications.
    6. Coleman, W. A. 1968. Mathematical verification of a certain Monte Carlo sampling technique and applications of the technique to radiation transport problems. Nuclear Science and Engineering 32, 1 (Apr.), 76–81.Cross Ref
    7. Dachsbacher, C., Křivánek, J., Hašan, M., Arbree, A., Walter, B., and Novák, J. 2013. Scalable realistic rendering with many-light methods. Computer Graphics Forum 33, 1, 88–104.
    8. Galtier, M., Blanco, S., Caliot, C., Coustet, C., Dauchet, J., Hafi, M. E., Eymet, V., Fournier, R., Gautrais, J., Khuong, A., Piaud, B., and Terre, G. 2013. Integral formulation of null-collision Monte Carlo algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer 125 (Apr.), 57–68.Cross Ref
    9. Georgiev, I., Křivánek, J., Hachisuka, T., Nowrouzezahrai, D., and Jarosz, W. 2013. Joint importance sampling of low-order volumetric scattering. ACM TOG (Proc. of SIGGRAPH Asia) 32, 6 (Nov.), 164:1–164:14.
    10. Hayakawa, C. K., Spanier, J., and Venugopalan, V. 2014. Comparative analysis of discrete and continuous absorption weighting estimators used in Monte Carlo simulations of radiative transport in turbid media. J. Opt. Soc. Am. A 31, 2, 301–311.Cross Ref
    11. Hykes, J. M., and Densmore, J. D. 2009. Non-analog Monte Carlo estimators for radiation momentum deposition. Journal of Quantitative Spectroscopy and Radiative Transfer 110, 13, 1097–1110.Cross Ref
    12. Jakob, W., 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.
    13. Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P.-P., and Zwicker, M. 2011. Progressive photon beams. ACM TOG (Proc. of SIGGRAPH Asia) 30, 6 (Dec.), 181:1–181:12.
    14. Kajiya, J. T. 1986. The rendering equation. Computer Graphics (Proc. of SIGGRAPH), 143–150.
    15. Keller, A. 1997. Instant radiosity. In Proc. of SIGGRAPH 97, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, Annual Conference Series, 49–56.
    16. Kulla, C., and Fajardo, M. 2012. Importance sampling techniques for path tracing in participating media. CGF (Proc. of Eurographics Symposium on Rendering) 31, 4 (June), 1519–1528.
    17. Křivánek, J., Georgiev, I., Hachisuka, T., Vévoda, P., Šik, M., Nowrouzezahrai, D., and Jarosz, W. 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM TOG (Proc. of SIGGRAPH) 33, 4, 103:1–103:13.
    18. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Compugraphics ’93, 145–153.
    19. Leppänen, J. 2010. Performance of Woodcock delta-tracking in lattice physics applications using the Serpent Monte Carlo reactor physics burnup calculation code. Annals of Nuclear Energy 37, 5, 715–722.Cross Ref
    20. Museth, K. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM TOG 32, 3 (July), 27:1–27:22.
    21. Pauly, M., Kollig, T., and Keller, A. 2000. Metropolis light transport for participating media. In Proc. of Eurographics Workshop on Rendering Techniques, Springer-Verlag, London, UK, 11–22.
    22. Perlin, K. H., and Hoffert, E. M. 1989. Hypertexture. Computer Graphics (Proc. of SIGGRAPH) 23, 3 (July), 253–262.
    23. Pharr, M., and Humphreys, G. 2010. Physically Based Rendering: From Theory to Implementation, 2nd ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
    24. Raab, M., Seibert, D., and Keller, A. 2008. Unbiased global illumination with participating media. In Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, 591–606.
    25. Skullerud, H. R. 1968. The stochastic computer simulation of ion motion in a gas subjected to a constant electric field. Journal of Physics D: Applied Physics 1, 11, 1567–1568.Cross Ref
    26. Szirmay-Kalos, L., Tóth, B., and Magdics, M. 2011. Free path sampling in high resolution inhomogeneous participating media. Computer Graphics Forum 30, 1, 85–97.Cross Ref
    27. Veach, E., and Guibas, L. J. 1994. Bidirectional estimators for light transport. In Proc. of Eurographics Rendering Workshop 1994, 147–162.
    28. von Neumann, J. 1951. Various techniques used in connection with random digits. Journal of Research of the National Bureau of Standards, Appl. Math. Series 12, 36–38.
    29. Woodcock, E., Murphy, T., Hemmings, P., and T. C., L. 1965. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. In Applications of Computing Methods to Reactor Problems, Argonne National Laboratory.
    30. Yue, Y., Iwasaki, K., Chen, B.-Y., Dobashi, Y., and Nishita, T. 2010. Unbiased, adaptive stochastic sampling for rendering inhomogeneous participating media. ACM TOG (Proc. of SIGGRAPH Asia) 29, 6 (Dec.), 177:1–177:8.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org