“Reduced-order shape optimization using offset surfaces” – ACM SIGGRAPH HISTORY ARCHIVES

“Reduced-order shape optimization using offset surfaces”

  • ©

Conference:


Type(s):


Title:

    Reduced-order shape optimization using offset surfaces

Session/Category Title:   Fabrication & Function


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Given the 2-manifold surface of a 3d object, we propose a novel method for the computation of an offset surface with varying thickness such that the solid volume between the surface and its offset satisfies a set of prescribed constraints and at the same time minimizes a given objective functional. Since the constraints as well as the objective functional can easily be adjusted to specific application requirements, our method provides a flexible and powerful tool for shape optimization. We use manifold harmonics to derive a reduced-order formulation of the optimization problem, which guarantees a smooth offset surface and speeds up the computation independently from the input mesh resolution without affecting the quality of the result. The constrained optimization problem can be solved in a numerically robust manner with commodity solvers. Furthermore, the method allows simultaneously optimizing an inner and an outer offset in order to increase the degrees of freedom. We demonstrate our method in a number of examples where we control the physical mass properties of rigid objects for the purpose of 3d printing.

References:


    1. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Transactions on Graphics 31, 4 (July), 1–9. Google ScholarDigital Library
    2. Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-It: Optimizing Moment of Inertia for Spinnable Objects. ACM Transactions on Graphics 33, 4 (July), 1–10. Google ScholarDigital Library
    3. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Transactions on Graphics 29, 4 (July), 1. Google ScholarDigital Library
    4. Bickel, B., Gross, M., Kaufmann, P., Skouras, M., Thomaszewski, B., Bradley, D., Beeler, T., Jackson, P., Marschner, S., and Matusik, W. 2012. Physical face cloning. ACM Transactions on Graphics 31, 4 (July), 1–10. Google ScholarDigital Library
    5. Botsch, M., and Kobbelt, L. 2004. An intuitive framework for real-time freeform modeling. ACM Transactions on Graphics 23, 3 (Aug.), 630. Google ScholarDigital Library
    6. Christiansen, A. N., Schmidt, R., and BÆ Rentzen, J. A. 2015. Automatic balancing of 3D models. Computer-Aided Design 58 (Jan.), 236–241.Google ScholarDigital Library
    7. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM Transactions on Graphics 32, 4 (July), 1. Google ScholarDigital Library
    8. Goldstein, H., Poole, C. P., and Safko, J. L. 2002. Classical Mechanics. Addison Wesley.Google Scholar
    9. Haftka, R. T., and Gürdal, Z. 1992. Elements of Structural Optimization, 3rd rev. a ed. Springer.Google Scholar
    10. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Transactions on Graphics 30, 4 (July), 1. Google ScholarDigital Library
    11. Jacobson, A., Panozzo, D., and Others, 2014. {libigl}: A simple {C++} geometry processing library.Google Scholar
    12. Kim, T., and James, D. L. 2009. Skipping steps in deformable simulation with online model reduction. ACM Transactions on Graphics 28, 5 (Dec.), 1. Google ScholarDigital Library
    13. Kobbelt, L., Campagna, S., Vorsatz, J., and Seidel, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. Proceedings ACM SIGGRAPH ’98 (July), 105–114. Google ScholarDigital Library
    14. Lehoucq, R. B., Sorensen, D. C., and Yang, C. 1998. ARPACK Users’ Guide, band 6 of ed. Society for Industrial and Applied Mathematics (SIAM), Jan.Google Scholar
    15. Levy, B. 2006. Laplace-Beltrami Eigenfunctions: Towards an Algorithm That “Understands” Geometry. In IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), IEEE, 13–13. Google ScholarDigital Library
    16. Lu, L., Chen, B., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., and Cohen-Or, D. 2014. Build-to-Last: Strength to Weight 3D Printed Objects. ACM Transactions on Graphics 33, 4 (July), 1–10. Google ScholarDigital Library
    17. Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. 2012. Chopper: partitioning models into 3D-printable parts. ACM Transactions on Graphics 31, 6 (Nov.), 1. Google ScholarDigital Library
    18. Messner, A. M., and Taylor, G. Q. 1980. Algorithm 550: Solid Polyhedron Measures {Z}. ACM Transactions on Mathematical Software 6, 1 (Mar.), 121–130. Google ScholarDigital Library
    19. Pentland, A., and Williams, J. 1989. Good vibrations: model dynamics for graphics and animation. ACM SIGGRAPH Computer Graphics 23, 3 (July), 207–214. Google ScholarDigital Library
    20. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1, 15–36.Google ScholarCross Ref
    21. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make It Stand: Balancing Shapes for 3D Fabrication. ACM Transactions on Graphics 32, 4 (July), 1. Google ScholarDigital Library
    22. Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational Design of Rubber Balloons. Computer Graphics Forum 31, 2pt4 (May), 835–844. Google ScholarDigital Library
    23. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3D printable objects. ACM Transactions on Graphics 31, 4 (July), 1–11. Google ScholarDigital Library
    24. Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. ACM Transactions on Graphics 26, 3 (July), 80. Google ScholarDigital Library
    25. Tagliasacchi, A., Alhashim, I., Olson, M., and Zhang, H. 2012. Mean Curvature Skeletons. Computer Graphics Forum 31, 5 (Aug.), 1735–1744. Google ScholarDigital Library
    26. Taubin, G. 1995. A signal processing approach to fair surface design. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques – SIGGRAPH ’95, ACM Press, New York, New York, USA, 351–358. Google ScholarDigital Library
    27. Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., and Gross, M. 2014. Computational design of linkage-based characters. ACM Transactions on Graphics 33, 4 (July), 1–9. Google ScholarDigital Library
    28. Timmer, H., and Stern, J. 1980. Computation of global geometric properties of solid objects. Computer-Aided Design 12, 6 (Nov.), 301–304.Google ScholarCross Ref
    29. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM Transactions on Graphics 30, 4 (July), 1. Google ScholarDigital Library
    30. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Transactions on Graphics 31, 4 (July), 1–11. Google ScholarDigital Library
    31. Vallet, B., and Lévy, B. 2008. Spectral Geometry Processing with Manifold Harmonics. Computer Graphics Forum 27, 2 (Apr.), 251–260.Google ScholarCross Ref
    32. von Tycowicz, C., Schulz, C., Seidel, H.-P., and Hildebrandt, K. 2013. An efficient construction of reduced deformable objects. ACM Transactions on Graphics 32, 6 (Nov.), 1–10. Google ScholarDigital Library
    33. Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., and Liu, X. 2013. Cost-effective printing of 3D objects with skin-frame structures. ACM Transactions on Graphics 32, 6 (Nov.), 1–10. Google ScholarDigital Library
    34. Zhang, H., Van Kaick, O., and Dyer, R. 2010. Spectral Mesh Processing. Computer Graphics Forum 29, 6 (Sept.), 1865–1894.Google ScholarCross Ref
    35. Zhou, Q., Panetta, J., and Zorin, D. 2013. Worst-case structural analysis. ACM Transactions on Graphics 32, 4 (July), 1. Google ScholarDigital Library
    36. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM Transactions on Graphics 31, 6 (Nov.), 1. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: