“Practical modeling and acquisition of layered facial reflectance”
Conference:
Type(s):
Title:
- Practical modeling and acquisition of layered facial reflectance
Session/Category Title: Reflectance & subdivision
Presenter(s)/Author(s):
Abstract:
We present a practical method for modeling layered facial reflectance consisting of specular reflectance, single scattering, and shallow and deep subsurface scattering. We estimate parameters of appropriate reflectance models for each of these layers from just 20 photographs recorded in a few seconds from a single viewpoint. We extract spatially-varying specular reflectance and single-scattering parameters from polarization-difference images under spherical and point source illumination. Next, we employ direct-indirect separation to decompose the remaining multiple scattering observed under cross-polarization into shallow and deep scattering components to model the light transport through multiple layers of skin. Finally, we match appropriate diffusion models to the extracted shallow and deep scattering components for different regions on the face. We validate our technique by comparing renderings of subjects to reference photographs recorded from novel viewpoints and under novel illumination conditions.
References:
1. Ashikhmin, M., Premoze, S., and Shirley, P. S. 2000. A microfacet-based BRDF generator. In Proceedings of ACM SIG-GRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, 65–74. Google Scholar
2. Ashikhmin, M., 2006. Distribution-based BRDFs. http://jesper.kalliope.org/blog/library/dbrdfs.pdf.Google Scholar
3. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, 145–156. Google Scholar
4. d’Eon, E., Luebke, D., and Enderton, E. 2007. Efficient rendering of human skin. In Eurographics Symposium on Rendering 2007. Google Scholar
5. Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. ACM Transactions on Graphics 24, 3 (Aug.), 1032–1039. Google ScholarDigital Library
6. Donner, C., and Jensen, H. W. 2006. A spectral BSSRDF for shading human skin. In Rendering Techniques 2006: 17th Eurographics Workshop on Rendering, 409–418. Google Scholar
7. Donner, C., Weyrich, T., d’Eon, E., Ramamoorthi, R., and Rusinkiewicz, S. 2008. A layered, heterogeneous reflectance model for acquiring and rendering human skin. In ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia). Google Scholar
8. Fuchs, M., Blanz, V., Lensch, H., and Seidel, H.-P. 2005. Reflectance from images: a model-based approach for human faces. IEEE Transactions on Visualization and Computer Graphics 11, 3 (May/June), 296–305. Google ScholarDigital Library
9. Georghiades, A., Belhumeur, P., and Kriegman, D. 1999. Illumination-based image synthesis: Creating novel images of human faces under differing pose and lighting. In IEEE Workshop on Multi-View Modeling and Analysis of Visual Scenes, 47–54. Google ScholarDigital Library
10. Georghiades, A. 2003. Recovering 3-D shape and reflectance from a small number of photographs. In Rendering Techniques, 230–240. Google Scholar
11. Goesele, M., Lensch, H. P. A., Lang, J., Fuchs, C., and Seidel, H.-P. 2004. Disco: acquisition of translucent objects. ACM Transactions on Graphics 23, 3 (Aug.), 835–844. Google ScholarDigital Library
12. Hanrahan, P., and Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. In Proceedings of SIGGRAPH 93, Computer Graphics Proceedings, Annual Conference Series, 165–174. Google Scholar
13. Hery, C. 2003. Implementing a skin BSSRDF (or several). In SIGGRAPH course notes: Renderman Theory and Practices. Google Scholar
14. Igarashi, T., Nishino, K., and Nayar, S. K. 2007. The appearance of human skin: A survey. In Foundations and Trends in Computer Graphics and Vision, vol. 3. 1–95. Google ScholarDigital Library
15. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 511–518. Google Scholar
16. Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters. Google Scholar
17. Koenderink, J., and Pont, S. 2003. The secret of velvety skin. Mach. Vision Appl. 14, 4, 260–268. Google ScholarDigital Library
18. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Rendering Techniques, 183–194. Google Scholar
19. Marschner, S. R., Westin, S. H., Lafortune, E. P. F., Torrance, K. E., and Greenberg, D. P. 1999. Image-based BRDF measurement including human skin. In Eurographics Rendering Workshop 1999. Google Scholar
20. Marschner, S., Guenter, B., and Raghupathy, S. 2000. Modeling and rendering for realistic facial animation. In Rendering Techniques 2000: 11th Eurographics Workshop on Rendering, 231–242. Google Scholar
21. Morgan, S. P., and Ridgway, M. E. 2000. Polarization properties of light backscattered from a two layer scattering medium. Opt. Express 7, 12 (Dec), 395–402.Google ScholarCross Ref
22. Nayar, S. K., Krishnan, G., Grossberg, M. D., and Raskar, R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM Transactions on Graphics 25, 3 (July), 935–944. Google ScholarDigital Library
23. Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., and Dutré, P. 2006. A compact factored representation of heterogeneous subsurface scattering. ACM Transactions on Graphics 25, 3 (July), 746–753. Google ScholarDigital Library
24. Pharr, M., and Humphreys, G. 2004. Physically Based Redering. Morgan Kaufmann, New York. Google Scholar
25. Tariq, S., Gardner, A., Llamas, I., Jones, A., Debevec, P., and Turk, G. 2006. Efficient estimation of spatially varying subsurface scattering parameters. In Proc. 11th Int’l Fall Workshop on Vision, Modeling, and Visualzation (VMV 2006), 165–174.Google Scholar
26. Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2005. Modeling and rendering of quasi-homogeneous materials. ACM Transactions on Graphics 24, 3 (Aug.), 1054–1061. Google ScholarDigital Library
27. Torrance, K. E., and Sparrow, E. M. 1967. Theory of off-specular reflection from roughened surfaces. J. Opt. Soc. Am. 57, 1104–1114.Google ScholarCross Ref
28. Tuchin, V. 2007. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. SPIE Press.Google ScholarCross Ref
29. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., and Shum, H.-Y. 2008. Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Transactions on Graphics 27, 1, 1–18. Google ScholarDigital Library
30. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. 2006. Analysis of human faces using a measurement-based skin reflectance model. ACM Transactions on Graphics 25, 3, 1013–1024. Google ScholarDigital Library
31. Woodham, R. J. 1978. Photometric stereo: A reflectance map technique for determining surface orientation from image intensity. In Proc. SPIE’s 22nd Annual Technical Symposium, vol. 155.Google Scholar
32. Zickler, T., Ramamoorthi, R., Enrique, S., and Belhumeur, P. N. 2006. Reflectance sharing: Predicting appearance from a sparse set of images of a known shape. IEEE Trans. Pattern Anal. Mach. Intell. 28, 8, 1287–1302. Google ScholarDigital Library


