“Position-Based Surface Tension Flow” by Xing, Ruan, Wang, Zhu and Chen
Conference:
Type(s):
Title:
- Position-Based Surface Tension Flow
Session/Category Title: Fluid Simulation
Presenter(s)/Author(s):
Abstract:
This paper presents a novel approach to simulating surface tension flow within a position-based dynamics (PBD) framework. We enhance the conventional PBD fluid method in terms of its surface representation and constraint enforcement to furnish support for the simulation of interfacial phenomena driven by strong surface tension and contact dynamics. The key component of our framework is an on-the-fly local meshing algorithm to build the local geometry around each surface particle. Based on this local mesh structure, we devise novel surface constraints that can be integrated seamlessly into a PBD framework to model strong surface tension effects. We demonstrate the efficacy of our approach by simulating a multitude of surface tension flow examples exhibiting intricate interfacial dynamics of films and drops, which were all infeasible for a traditional PBD method.
References:
1. Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2013. Versatile Surface Tension and Adhesion for SPH Fluids. ACM Trans. Graph. 32, 6, Article 182 (nov 2013), 8 pages.
2. Iván Alduán, Angel Tena, and Miguel A. Otaduy. 2017. DYVERSO: A Versatile Multi-Phase Position-Based Fluids Solution for VFX. Computer Graphics Forum 36, 8 (2017), 32–44.
3. Christopher Batty, Andres Uribe, Basile Audoly, and Eitan Grinspun. 2012. Discrete Viscous Sheets. ACM Trans. Graph. 31, 4, Article 113 (jul 2012), 7 pages.
4. Markus Becker and Matthias Teschner. 2007. Weakly Compressible SPH for Free Surface Flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California) (SCA ’07). Eurographics Association, Goslar, DEU, 209–217.
5. Mikhail Belkin, Jian Sun, and Yusu Wang. 2009. Constructing Laplace Operator from Point Clouds in Rd. Society for Industrial and Applied Mathematics, USA, 1031–1040.
6. Jan Bender, Dan Koschier, Patrick Charrier, and Daniel Weber. 2014. Position-based simulation of continuous materials. Computers & Graphics 44 (2014), 1–10.
7. Jan Bender, Matthias Müller, and Miles Macklin. 2017. A Survey on Position Based Dynamics, 2017. In Proceedings of the European Association for Computer Graphics: Tutorials (Lyon, France) (EG ’17). Eurographics Association, Goslar, DEU, Article 6, 31 pages.
8. Kenneth Bodin, Claude Lacoursière, and Martin Servin. 2012. Constraint Fluids. IEEE Transactions on Visualization and Computer Graphics 18 (2012), 516–526.
9. Tyson Brochu, Christopher Batty, and Robert Bridson. 2010. Matching Fluid Simulation Elements to Surface Geometry and Topology. ACM Trans. Graph. 29, 4, Article 47 (jul 2010), 9 pages.
10. Jingyu Chen, Victoria Kala, Alan Marquez-Razon, Elias Gueidon, David A. B. Hyde, and Joseph Teran. 2021. A Momentum-Conserving Implicit Material Point Method for Surface Tension with Contact Angles and Spatial Gradients. ACM Trans. Graph. 40, 4, Article 111 (jul 2021), 16 pages.
11. Pascal Clausen, Martin Wicke, Jonathan R. Shewchuk, and James F. O’Brien. 2013. Simulating Liquids and Solid-Liquid Interactions with Lagrangian Meshes. ACM Trans. Graph. 32, 2, Article 17 (apr 2013), 15 pages.
12. Simon Clavet, Philippe Beaudoin, and Pierre Poulin. 2005. Particle-Based Viscoelastic Fluid Simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA ’05). Association for Computing Machinery, New York, NY, USA, 219–228.
13. Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double Bubbles sans Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams. ACM Trans. Graph. 34, 4, Article 149 (jul 2015), 9 pages.
14. Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016. Surface-Only Liquids. ACM Trans. Graph. 35, 4, Article 78 (jul 2016), 12 pages.
15. Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API for shared-memory programming. IEEE computational science and engineering 5, 1 (1998), 46–55.
16. Boris Delaunay et al. 1934. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7, 793–800 (1934), 1–2.
17. R. Diziol, J. Bender, and D. Bayer. 2011. Robust Real-Time Deformation of Incompressible Surface Meshes. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Vancouver, British Columbia, Canada) (SCA ’11). Association for Computing Machinery, New York, NY, USA, 237–246.
18. Cyril Duez, Christophe Ybert, Christophe Clanet, and Lydéric Bocquet. 2010. Wetting Controls Separation of Inertial Flows from Solid Surfaces. Physical Review Letters 104, 8 (feb 2010).
19. Guillaume Durey, Quentin Magdelaine, Mathias Casiulis, Hoon Kwon, Julien Mazet, Pierre Chantelot, Anaïs Gauthier, Christophe Clanet, and David Quéré. 2020. Droplets impaling on a cone. Phys. Rev. Fluids 5 (Nov 2020), 110507. Issue 11.
20. Nick Foster and Ronald Fedkiw. 2001. Practical Animation of Liquids. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01). Association for Computing Machinery, New York, NY, USA, 23–30.
21. M. Frâncu and F. Moldoveanu. 2017. Unified Simulation of Rigid and Flexible Bodies Using Position Based Dynamics. In Proceedings of the 13th Workshop on Virtual Reality Interactions and Physical Simulations (Lyon, France) (VRIPHYS ’17). Eurographics Association, Goslar, DEU, 49–58.
22. C.W Hirt and B.D Nichols. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 1 (1981), 201–225.
23. Libo Huang and Dominik L. Michels. 2020. Surface-Only Ferrofluids. ACM Trans. Graph. 39, 6, Article 174 (nov 2020), 17 pages.
24. Libo Huang, Ziyin Qu, Xun Tan, Xinxin Zhang, Dominik L. Michels, and Chenfanfu Jiang. 2021. Ships, Splashes, and Waves on a Vast Ocean. ACM Trans. Graph. 40, 6, Article 203 (dec 2021), 15 pages.
25. Markus Huber, Stefan Reinhardt, Daniel Weiskopf, and Bernhard Eberhardt. 2015. Evaluation of Surface Tension Models for SPH-Based Fluid Animations Using a Benchmark Test. In Workshop on Virtual Reality Interaction and Physical Simulation, Fabrice Jaillet, Florence Zara, and Gabriel Zachmann (Eds.). The Eurographics Association, USA, 41–50.
26. David A. B. Hyde, Steven W. Gagniere, Alan Marquez-Razon, and Joseph Teran. 2020. An Implicit Updated Lagrangian Formulation for Liquids with Large Surface Energy. ACM Trans. Graph. 39, 6, Article 183 (nov 2020), 13 pages.
27. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2014. Implicit Incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (2014), 426–435.
28. Sadashige Ishida, Peter Synak, Fumiya Narita, Toshiya Hachisuka, and Chris Wojtan. 2020. A Model for Soap Film Dynamics with Evolving Thickness. ACM Trans. Graph. 39, 4, Article 31 (jul 2020), 11 pages.
29. Sadashige Ishida, Masafumi Yamamoto, Ryoichi Ando, and Toshiya Hachisuka. 2017. A Hyperbolic Geometric Flow for Evolving Films and Foams. ACM Trans. Graph. 36, 6, Article 199 (nov 2017), 11 pages.
30. Ki-Hoon Kim, Jung Lee, Chang-Hun Kim, and Jong-Hyun Kim. 2021. Particle-Based Dynamic Water Drops with High Surface Tension in Real Time. Symmetry 13, 7 (2021), 1265.
31. Tae-Yong Kim, Nuttapong Chentanez, and Matthias Müller-Fischer. 2012. Long Range Attachments – a Method to Simulate Inextensible Clothing in Computer Games. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Lausanne, Switzerland) (SCA ’12). Eurographics Association, Goslar, DEU, 305–310.
32. Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2019. Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids. In Eurographics 2019 – Tutorials. The Eurographics Association;, New York, NY, USA, 1–41.
33. S. Koshizuka and Y. Oka. 1996. Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid. Nuclear Science and Engineering 123, 3 (1996), 421–434. arXiv:https://doi.org/10.13182/NSE96-A24205
34. Rongjie Lai, Jian Liang, and Hongkai Zhao. 2013. A local mesh method for solving PDEs on point clouds. Inverse Problems and Imaging 7 (2013), 737–755.
35. Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–12.
36. Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. 2014. Unified Particle Physics for Real-Time Applications. ACM Trans. Graph. 33, 4, Article 153 (jul 2014), 12 pages.
37. Takuya Matsunaga, Seiichi Koshizuka, Tomoyuki Hosaka, and Eiji Ishii. 2020. Moving surface mesh-incorporated particle method for numerical simulation of a liquid droplet. J. Comput. Phys. 409 (2020), 109349.
38. Joseph Morris. 2000. Simulating surface tension with Smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids 33 (06 2000), 333 — 353. <333::AID-FLD11>3.0.CO;2-7
39. Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-Based Fluid Simulation for Interactive Applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California) (SCA ’03). Eurographics Association, Goslar, DEU, 154–159.
40. Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air Meshes for Robust Collision Handling. ACM Trans. Graph. 34, 4, Article 133 (jul 2015), 9 pages.
41. Matthias Müller, Bruno Heidelberger, Marcus Hennix, and J. W. Ratcliff. 2007. Position based dynamics. J. Vis. Commun. Image Represent. 18 (2007), 109–118.
42. Matthias Müller, Barbara Solenthaler, Richard Keiser, and Markus Gross. 2005. Particle-Based Fluid-Fluid Interaction. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA ’05). Association for Computing Machinery, New York, NY, USA, 237–244.
43. Matthias Müller, Tae-Yong Kim, and Nuttapong Chentanez. 2012. Fast Simulation of Inextensible Hair and Fur. In Workshop on Virtual Reality Interaction and Physical Simulation, Jan Bender, Arjan Kuijper, Dieter W. Fellner, and Eric Guerin (Eds.). The Eurographics Association, USA, 39–44.
44. Stanley Osher and James A Sethian. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 1 (1988), 12–49.
45. Joseph Antoine Ferdinand Plateau. 1873. Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Vol. 2. Gauthier-Villars.
46. Manu Prakash, David Quéré, and John WM Bush. 2008. Surface tension transport of prey by feeding shorebirds: the capillary ratchet. science 320, 5878 (2008), 931–934.
47. Alec R. Rivers and Doug L. James. 2007. FastLSM: Fast Lattice Shape Matching for Robust Real-Time Deformation. ACM Trans. Graph. 26, 3 (jul 2007), 82–es.
48. Avi Robinson-Mosher, Tamar Shinar, Jon Gretarsson, Jonathan Su, and Ronald Fedkiw. 2008. Two-Way Coupling of Fluids to Rigid and Deformable Solids and Shells. ACM Trans. Graph. 27, 3 (aug 2008), 1–9.
49. Liangwang Ruan, Jinyuan Liu, Bo Zhu, Shinjiro Sueda, Bin Wang, and Baoquan Chen. 2021. Solid-Fluid Interaction with Surface-Tension-Dominant Contact. ACM Trans. Graph. 40, 4, Article 120 (jul 2021), 12 pages.
50. Nadine Abu Rumman, Prapanch Nair, Patric Müller, Loic Barthe, and David Vanderhaeghe. 2020. ISPH-PBD: Coupled Simulation of Incompressible Fluids and Deformable Bodies. Vis. Comput. 36, 5 (may 2020), 893–910.
51. Craig Schroeder, Wen Zheng, and Ronald Fedkiw. 2012. Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid. J. Comput. Phys. 231, 4 (2012), 2092–2115.
52. James A Sethian and Peter Smereka. 2003. Level set methods for fluid interfaces. Annual review of fluid mechanics 35, 1 (2003), 341–372.
53. Kazuya Shibata, Issei Masaie, Masahiro Kondo, Kohei Murotani, and Seiichi Koshizuka. 2015. Improved pressure calculation for the moving particle semi-implicit method. Computational particle mechanics 2, 1 (2015), 91–108.
54. Russell Smith. 2004. Open dynamics engine v0. 5 user guide. http://ode.org/ (2004).
55. B. Solenthaler and R. Pajarola. 2009. Predictive-Corrective Incompressible SPH. In ACM SIGGRAPH 2009 Papers (New Orleans, Louisiana) (SIGGRAPH ’09). Association for Computing Machinery, New York, NY, USA, Article 40, 6 pages.
56. Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., USA, 121–128.
57. Jos Stam and Eugene Fiume. 1995. Depicting Fire and Other Gaseous Phenomena Using Diffusion Processes. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’95). Association for Computing Machinery, New York, NY, USA, 129–136.
58. Alexandre Tartakovsky and Paul Meakin. 2005. Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Physical review. E, Statistical, nonlinear, and soft matter physics 72 (09 2005), 026301.
59. Nils Thürey, Chris Wojtan, Markus Gross, and Greg Turk. 2010. A Multiscale Approach to Mesh-Based Surface Tension Flows. ACM Trans. Graph. 29, 4, Article 48 (jul 2010), 10 pages.
60. Nobuyuki Umetani, Ryan Schmidt, and Jos Stam. 2015. Position-Based Elastic Rods. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Copenhagen, Denmark) (SCA ’14). Eurographics Association, Goslar, DEU, 21–30.
61. Hui Wang, Yongxu Jin, Anqi Luo, Xubo Yang, and Bo Zhu. 2020. Codimensional Surface Tension Flow Using Moving-Least-Squares Particles. ACM Trans. Graph. 39, 4, Article 42 (jul 2020), 16 pages.
62. Huamin Wang, Peter J. Mucha, and Greg Turk. 2005. Water Drops on Surfaces. ACM Trans. Graph. 24, 3 (jul 2005), 921–929.
63. Mengdi Wang, Yitong Deng, Xiangxin Kong, Aditya H. Prasad, Shiying Xiong, and Bo Zhu. 2021. Thin-Film Smoothed Particle Hydrodynamics Fluid. ACM Trans. Graph. 40, 4, Article 110 (jul 2021), 16 pages.
64. Chris Wojtan, Matthias Müller-Fischer, and Tyson Brochu. 2011. Liquid Simulation with Mesh-Based Surface Tracking. In ACM SIGGRAPH 2011 Courses (Vancouver, British Columbia, Canada) (SIGGRAPH ’11). Association for Computing Machinery, New York, NY, USA, Article 8, 84 pages.
65. Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2010. Physics-Inspired Topology Changes for Thin Fluid Features. ACM Trans. Graph. 29, 4, Article 50 (jul 2010), 8 pages.
66. Jihun Yu, Chris Wojtan, Greg Turk, and Chee Yap. 2012. Explicit Mesh Surfaces for Particle Based Fluids. Comput. Graph. Forum 31, 2pt4 (may 2012), 815–824.
67. Mingyu Zhang. 2010. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method. J. Comput. Phys. 229, 19 (2010), 7238–7259.
68. Yizhong Zhang, Huamin Wang, Shuai Wang, Yiying Tong, and Kun Zhou. 2011. A deformable surface model for real-time water drop animation. IEEE Transactions on Visualization and Computer Graphics 18, 8 (2011), 1281–1289.
69. Yizhong Zhang, Huamin Wang, Shuai Wang, Yiying Tong, and Kun Zhou. 2012. A Deformable Surface Model for Real-Time Water Drop Animation. IEEE Transactions on Visualization and Computer Graphics 18, 8 (2012), 1281–1289.
70. Wen Zheng, Jun-Hai Yong, and Jean-Claude Paul. 2006. Simulation of Bubbles. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Vienna, Austria) (SCA ’06). Eurographics Association, Goslar, DEU, 325–333.
71. Wen Zheng, Bo Zhu, Byungmoon Kim, and Ronald Fedkiw. 2015. A New Incompressibility Discretization for a Hybrid Particle MAC Grid Representation with Surface Tension. J. Comput. Phys. 280, C (jan 2015), 96–142.
72. Bo Zhu, Minjae Lee, Ed Quigley, and Ronald Fedkiw. 2015. Codimensional Non-Newtonian Fluids. ACM Trans. Graph. 34, 4, Article 115 (jul 2015), 9 pages.
73. Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald Fedkiw. 2014. Codimensional Surface Tension Flow on Simplicial Complexes. ACM Trans. Graph. 33, 4, Article 111 (jul 2014), 11 pages.
74. Fernando Zorilla, Marcel Ritter, Johannes Sappl, Wolfgang Rauch, and Matthias Harders. 2020. Accelerating Surface Tension Calculation in SPH via Particle Classification and Monte Carlo Integration. Computers 9, 2 (2020), 23.


