“Online Neural Path Guiding with Normalized Anisotropic Spherical Gaussians” – ACM SIGGRAPH HISTORY ARCHIVES

“Online Neural Path Guiding with Normalized Anisotropic Spherical Gaussians”

  • ©

Conference:


Type(s):


Title:

    Online Neural Path Guiding with Normalized Anisotropic Spherical Gaussians

Presenter(s)/Author(s):



Abstract:


    We propose a online framework to learn the spatial-varying distribution of the full product of the rendering equation, with a single small neural network using stochastic ray samples, and a novel, expressive, closed-form density model called the Normalized Anisotropic Spherical Gaussian mixture.

References:


    [1]
    Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Trans. Graph. 39, 4, Article 148 (Aug.2020), 17 pages. DOI:

    [2]
    Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Trans. Graph. 36, 4, Article 98 (jul.2017), 12 pages. DOI:

    [3]
    Alejandro Conty Estevez and Christopher Kulla. 2018. Importance sampling of many lights with adaptive tree splitting. Proc. ACM Comput. Graph. Interact. Tech. 1, 2, Article 25 (Aug.2018), 17 pages. DOI:

    [4]
    R. R. Currius, D. Dolonius, U. Assarsson, and E. Sintorn. 2020. Spherical gaussian light-field textures for fast precomputed global illumination. Computer Graphics Forum 39, 2 (2020), 133?146. DOI:

    [5]
    Stavros Diolatzis, Adrien Gruson, Wenzel Jakob, Derek Nowrouzezahrai, and George Drettakis. 2020. Practical product path guiding using linearly transformed cosines. InComputer Graphics Forum (Proceedings of Eurographics Symposium on Rendering) 39, 4 (July2020).

    [6]
    Addis Dittebrandt, Johannes Hanika, and Carsten Dachsbacher. 2020. Temporal sample reuse for next event estimation and path guiding for real-time path tracing. In Eurographics Symposium on Rendering.

    [7]
    Ana Dodik, Marios Papas, Cengiz ?ztireli, and Thomas M?ller. 2022. Path guiding using spatio-directional mixture models. Computer Graphics Forum 41, 1 (2022), 172?189. DOI:

    [8]
    Honghao Dong, Guoping Wang, and Sheng Li. 2023. Neural parametric mixtures for path guiding. In Proceedings of the ACM SIGGRAPH Conference (SIGGRAPH ?23). Association for Computing Machinery, New York, NY, Article 29, 10 pages. DOI:

    [9]
    Dar Gilboa, Ari Pakman, and Thibault Vatter. 2021. Marginalizable density models. (2021). arXiv:2106.04741. Retrieved from DOI:

    [10]
    Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Manifold next event estimation. Comput. Graph. Forum 34. DOI:

    [11]
    David Hart, Matt Pharr, Thomas M?ller, Ward Lopes, Morgan McGuire, and Peter Shirley. 2020. Practical product sampling by fitting and composing warps. Comput. Graph. Forum 39, 4 (Jul.2020), 149?158. DOI:

    [12]
    Eric Heitz, Jonathan Dupuy, Stephen Hill, and David Neubelt. 2016. Real-time polygonal-light shading with linearly transformed cosines. ACM Trans. Graph. 35, 4, Article 41 (Jul.2016), 8 pages. DOI:

    [13]
    Sebastian Herholz, Oskar Elek, Ji?? Vorba, Hendrik Lensch, and Jaroslav K?iv?nek. 2016. Product importance sampling for light transport path guiding. Comput. Graph. Forum 35, 4 (2016), 67?77. DOI:

    [14]
    Sebastian Herholz, Yangyang Zhao, Oskar Elek, Derek Nowrouzezahrai, Hendrik P. A. Lensch, and Jaroslav K?iv?nek. 2019. Volume path guiding based on zero-variance random walk theory. ACM Trans. Graph. 38, 3, Article 25 (Jun.2019), 19 pages. DOI:

    [15]
    Wojciech Jarosz, Nathan A. Carr, and Henrik Wann Jensen. 2009. Importance sampling spherical harmonics. Computer Graphics Forum 28, 2 (2009), 577?586. DOI:

    [16]
    Henrik Wann Jensen. 1995. Importance driven path tracing using the photon map. In Rendering Techniques?95. Patrick M. Hanrahan and Werner Purgathofer (Eds.). Springer Vienna, Vienna, 326?335.

    [17]
    James T. Kajiya. 1986. The rendering equation. SIGGRAPH Comput. Graph. 20, 4 (Aug.1986), 143?150. DOI:

    [18]
    John T. Kent. 1982. The fisher-bingham distribution on the sphere. J. Roy. Stat. Soc. Ser. B (Methodol.) 44, 1 (1982), 71?80.

    [19]
    Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv: 1412.6980. Retrieved from http://arxiv.org/abs/1412.6980

    [20]
    Ivan Kobyzev, Simon J. D. Prince, and Marcus A. Brubaker. 2021. Normalizing flows: An introduction and review of current methods. IEEE Trans. Pattern Anal. Mach. Intell. 43, 11 (Nov.2021), 3964?3979. DOI:

    [21]
    Eric P. Lafortune and Yves D. Willems. 1995. A 5D tree to reduce the variance of Monte Carlo ray tracing. In Rendering Techniques ?95 (Proceedings of the 6th Eurographics Workshop on Rendering). 11?20. DOI:

    [22]
    Samuli Laine, Tero Karras, and Timo Aila. 2013. Megakernels considered harmful: Wavefront path tracing on GPUs. In Proceedings of the 5th High-Performance Graphics Conference (HPG ?13). Association for Computing Machinery, New York, NY, 137?143. DOI:

    [23]
    Daqi Lin, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuksel, and Chris Wyman. 2022. Generalized resampled importance sampling: Foundations of ReSTIR. ACM Trans. Graph. 41, 4, Article 75 (Jul.2022), 23 pages. DOI:

    [24]
    Yashuai L?, Libo Huang, Li Shen, and Zhiying Wang. 2017. Unleashing the power of GPU for physically-based rendering via dynamic ray shuffling. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-50 ?17). Association for Computing Machinery, New York, NY, 560?573. DOI:

    [25]
    Maxon. 2023. Redshift Renderer. Retrieved from https://www.maxon.net/en/redshift

    [26]
    Daniel Meister, Jakub Boksansky, Michael Guthe, and Jiri Bittner. 2020. On ray reordering techniques for faster GPU ray tracing. In Proceedings of the Symposium on Interactive 3D Graphics and Games (I3D ?20). Association for Computing Machinery, New York, NY, Article 13, 9 pages. DOI:

    [27]
    Bochang Moon, Steven McDonagh, Kenny Mitchell, and Markus Gross. 2016. Adaptive polynomial rendering. ACM Trans. Graph. 35, 4, Article 40 (Jul.2016), 10 pages. DOI:

    [28]
    Thomas M?ller. 2019. Path guiding in production, chapter 10. In Proceedings of the ACM SIGGRAPH Courses (SIGGRAPH ?19). Association for Computing Machinery, New York, NY, Article 18, 77 pages. DOI:

    [29]
    Thomas M?ller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41, 4, Article 102 (Jul.2022), 15 pages. DOI:

    [30]
    Thomas M?ller, Markus Gross, and Jan Nov?k. 2017. Practical path guiding for efficient light-transport simulation. Comput. Graph. Forum 36, 4 (Jul.2017), 91?100. DOI:

    [31]
    Thomas M?ller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Nov?k. 2019. Neural importance sampling. ACM Trans. Graph. 38, 5, Article 145 (Oct.2019), 19 pages. DOI:

    [32]
    Thomas M?ller, Fabrice Rousselle, Alexander Keller, and Jan Nov?k. 2020. Neural control variates. ACM Trans. Graph. 39, 6, Article 243 (Nov.2020), 19 pages. DOI:

    [33]
    Thomas M?ller, Fabrice Rousselle, Jan Nov?k, and Alexander Keller. 2021. Real-time neural radiance caching for path tracing. ACM Trans. Graph. 40, 4, Article 36 (Jul.2021), 16 pages. DOI:

    [34]
    OTOY. 2023. Octane Renderer. Retrieved from https://home.otoy.com/render/octane-render/

    [35]
    Y. Ouyang, S. Liu, M. Kettunen, M. Pharr, and J. Pantaleoni. 2021. ReSTIR GI: Path resampling for real-time path tracing. Computer Graphics Forum 40, 8 (2021), 17?29. DOI:

    [36]
    Jacopo Pantaleoni. 2020. Online path sampling control with progressive spatio-temporal filtering. arXiv:2005.07547. Retrieved from https://arxiv.org/abs/2005.07547

    [37]
    Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas K?pf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: an imperative style, high-performance deep learning library. In Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA.

    [38]
    Alexander Rath, Pascal Grittmann, Sebastian Herholz, Petr V?voda, Philipp Slusallek, and Jaroslav K?iv?nek. 2020. Variance-aware path guiding. ACM Trans. Graph. 39, 4, Article 151 (Jul.2020), 12 pages. DOI:

    [39]
    Lukas Ruppert, Sebastian Herholz, and Hendrik P. A. Lensch. 2020. Robust fitting of parallax-aware mixtures for path guiding. ACM Trans. Graph. 39, 4, Article 147 (Aug.2020), 15 pages. DOI:

    [40]
    Peter-Pike Sloan, Jan Kautz, and John Snyder. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21, 3 (Jul.2002), 527?536. DOI:

    [41]
    Carlos Ure?a, Marcos Fajardo, and Alan King. 2013. An area-preserving parametrization for spherical rectangles. In Proceedings of the Eurographics Symposium on Rendering (EGSR ?13). Eurographics Association, Goslar, DEU, 59?66. DOI:

    [42]
    Eric Veach. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation, Stanford, CA.

    [43]
    Void Dimensions. 2024. Clight Renderer. Retrieved from https://www.clightrender.com/

    [44]
    Ji?? Vorba, Ond?ej Karl?k, Martin ?ik, Tobias Ritschel, and Jaroslav K?iv?nek. 2014. On-line learning of parametric mixture models for light transport simulation. ACM Trans. Graph. 33, 4, Article 101 (Jul.2014), 11 pages. DOI:

    [45]
    Jiaping Wang, Peiran Ren, Minmin Gong, John Snyder, and Baining Guo. 2009. All-frequency rendering of dynamic, spatially-varying reflectance. In ACM SIGGRAPH Asia 2009 Papers (SIGGRAPH Asia ?09). Association for Computing Machinery, New York, NY, Article 133, 10 pages. DOI:

    [46]
    Kun Xu, Wei-Lun Sun, Zhao Dong, Dan-Yong Zhao, Run-Dong Wu, and Shi-Min Hu. 2013. Anisotropic spherical gaussians. ACM Trans. Graph. 32, 6, Article 209 (Nov.2013), 11 pages. DOI:

    [47]
    Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan Gu, and Kun Xu. 2022. LuisaRender: A high-performance rendering framework with layered and unified interfaces on stream architectures. ACM Trans. Graph. 41, 6, Article 232 (Nov.2022), 19 pages. DOI:

    [48]
    Junqiu Zhu, Yaoyi Bai, Zilin Xu, Steve Bako, Edgar Vel?zquez-Armend?riz, Lu Wang, Pradeep Sen, Milo? Ha?an, and Ling-Qi Yan. 2021a. Neural complex luminaires: Representation and rendering. ACM Trans. Graph. 40, 4, Article 57 (Jul.2021), 12 pages. DOI:

    [49]
    Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi. 2021b. Hierarchical neural reconstruction for path guiding using hybrid path and photon samples. ACM Trans. Graph. 40, 4, Article 35 (Jul.2021), 16 pages. DOI:


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org