“Neural radiosity” by Hadadan, Chen and Zwicker
Conference:
Type(s):
Title:
- Neural radiosity
Session/Category Title: Light Interactions and Differentiable Rendering
Presenter(s)/Author(s):
Abstract:
We introduce Neural Radiosity, an algorithm to solve the rendering equation by minimizing the norm of its residual, similar as in classical radiosity techniques. Traditional basis functions used in radiosity, such as piecewise polynomials or meshless basis functions are typically limited to representing isotropic scattering from diffuse surfaces. Instead, we propose to leverage neural networks to represent the full four-dimensional radiance distribution, directly optimizing network parameters to minimize the norm of the residual. Our approach decouples solving the rendering equation from rendering (perspective) images similar as in traditional radiosity techniques, and allows us to efficiently synthesize arbitrary views of a scene. In addition, we propose a network architecture using geometric learnable features that improves convergence of our solver compared to previous techniques. Our approach leads to an algorithm that is simple to implement, and we demonstrate its effectiveness on a variety of scenes with diffuse and non-diffuse surfaces.
References:
1. Barcin. 2020. At a Barber Scene. https://blendswap.com/blend/25730.
2. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.
3. Rohan Chabra, Jan Eric Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and Richard Newcombe. 2020. Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction. arXiv:2003.10983 [cs.CV]
4. Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. 2020. Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion. arXiv:2003.01456 [cs.CV]
5. Michael F. Cohen, Shenchang Eric Chen, John R. Wallace, and Donald P. Greenberg. 1988. A Progressive Refinement Approach to Fast Radiosity Image Generation. SIGGRAPH Comput. Graph. 22, 4 (June 1988), 75–84.
6. Ken Dahm and Alexander Keller. 2017. Learning Light Transport the Reinforced Way. arXiv:1701.07403 [cs.LG]
7. Sohrab Effati and Reza Buzhabadi. 2012. A neural network approach for solving Fredholm integral equations of the second kind. Neural Comput & Applic 21 (07 2012), 1–10.
8. Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. 1984. Modeling the Interaction of Light between Diffuse Surfaces. SIGGRAPH Comput. Graph. 18, 3 (Jan. 1984), 213–222.
9. Steven J. Gortler, Peter Schröder, Michael F. Cohen, and Pat Hanrahan. 1993. Wavelet Radiosity. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (Anaheim, CA) (SIGGRAPH ’93). Association for Computing Machinery, New York, NY, USA, 221–230.
10. David S. Immel, Michael F. Cohen, and Donald P. Greenberg. 1986. A Radiosity Method for Non-Diffuse Environments. SIGGRAPH Comput. Graph. 20, 4 (Aug. 1986), 133–142.
11. Arthur Jacot, Franck Gabriel, and Clément Hongler. 2020. Neural Tangent Kernel: Convergence and Generalization in Neural Networks. arXiv:1806.07572 [cs.LG]
12. Chiyu Max Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, and Thomas Funkhouser. 2020. Local Implicit Grid Representations for 3D Scenes. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
13. James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. 20, 4 (Aug. 1986), 143–150.
14. Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980
15. Jaakko Lehtinen, Matthias Zwicker, Emmanuel Turquin, Janne Kontkanen, Frédo Durand, François X. Sillion, and Timo Aila. 2008. A Meshless Hierarchical Representation for Light Transport. ACM Trans. Graph. 27, 3 (Aug. 2008), 1–9.
16. Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg. 1992. Discontinuity Meshing for Accurate Radiosity. IEEE Comput. Graph. Appl. 12, 6 (Nov. 1992), 25–39.
17. Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020. Neural Sparse Voxel Fields. NeurIPS (2020).
18. Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV.
19. Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. 2019. Neural Importance Sampling. ACM Trans. Graph. 38, 5, Article 145 (Oct. 2019), 19 pages.
20. Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural Control Variates. ACM Trans. Graph. 39, 6, Article 243 (Nov. 2020), 19 pages.
21. Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-Time Neural Radiance Caching for Path Tracing. 40, 4 (2021).
22. Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse Renderer. Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Dec. 2019).
23. Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. (2017).
24. Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. 2020. Convolutional Occupancy Networks. In European Conference on Computer Vision (ECCV).
25. Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo. 2013. Global Illumination with Radiance Regression Functions. ACM Trans. Graph. 32, 4, Article 130 (July 2013), 12 pages.
26. Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. 2020. Implicit Neural Representations with Periodic Activation Functions. In Proc. NeurIPS.
27. Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. CoRR abs/2101.10994 (2021). arXiv:2101.10994 https://arxiv.org/abs/2101.10994
28. Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P Srinivasan, Jonathan T Barron, and Ren Ng. 2020a. Learned Initializations for Optimizing Coordinate-Based Neural Representations. arXiv preprint arXiv:2012.02189 (2020).
29. Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. 2020b. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. arXiv:2006.10739 [cs.CV]
30. Thijs Vogels, Fabrice Rousselle, Brian Mcwilliams, Gerhard Röthlin, Alex Harvill, David Adler, Mark Meyer, and Jan Novák. 2018. Denoising with Kernel Prediction and Asymmetric Loss Functions. ACM Trans. Graph. 37, 4, Article 124 (July 2018), 15 pages.
31. Harold R. Zatz. 1993. Galerkin Radiosity: A Higher Order Solution Method for Global Illumination. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (Anaheim, CA) (SIGGRAPH ’93). Association for Computing Machinery, New York, NY, USA, 213–220.
32. Quan Zheng and Matthias Zwicker. 2018. Learning to Importance Sample in Primary Sample Space. CoRR abs/1808.07840 (2018). arXiv:1808.07840 http://arxiv.org/abs/1808.07840


