“Multi-perspective stereoscopy from light fields” – ACM SIGGRAPH HISTORY ARCHIVES

“Multi-perspective stereoscopy from light fields”

  • 2011-SA-Technical-Paper_Kim_Multi-Perspective-Stereoscopy-from-Light-Fields

Conference:


Type(s):


Title:

    Multi-perspective stereoscopy from light fields

Session/Category Title:   Stereo and Light Fields


Presenter(s)/Author(s):



Abstract:


    This paper addresses stereoscopic view generation from a light field. We present a framework that allows for the generation of stereoscopic image pairs with per-pixel control over disparity, based on multi-perspective imaging from light fields. The proposed framework is novel and useful for stereoscopic image processing and post-production. The stereoscopic images are computed as piecewise continuous cuts through a light field, minimizing an energy reflecting prescribed parameters such as depth budget, maximum disparity gradient, desired stereoscopic baseline, and so on. As demonstrated in our results, this technique can be used for efficient and flexible stereoscopic post-processing, such as reducing excessive disparity while preserving perceived depth, or retargeting of already captured scenes to various view settings. Moreover, we generalize our method to multiple cuts, which is highly useful for content creation in the context of multi-view autostereoscopic displays. We present several results on computer-generated content as well as live-action content.

References:


    1. Adelson, E., and Bergen, J. 1991. The plenoptic function and the elements of early vision. Computational Models of Visual Processing, 3–20.Google Scholar
    2. Adelson, E. H., and Wang, J. 1992. Single lens stereo with a plenoptic camera. IEEE PAMI 14, 2, 99–106. Google ScholarDigital Library
    3. Agrawal, A., and Raskar, R. 2007. Gradient domain manipulation techniques in vision and graphics. In ICCV Courses.Google Scholar
    4. Boykov, Y., and Kolmogorov, V. 2004. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE PAMI 26, 9, 1124–1137. Google ScholarDigital Library
    5. Boykov, Y., Veksler, O., and Zabih, R. 2001. Fast approximate energy minimization via graph cuts. IEEE PAMI 23, 11, 1222–1239. Google ScholarDigital Library
    6. Chai, J., Chan, S.-C., Shum, H.-Y., and Tong, X. 2000. Plenoptic sampling. In SIGGRAPH, 307–318. Google ScholarDigital Library
    7. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2011. A perceptual model for disparity. In SIGGRAPH, 96:1–96:10. Google ScholarDigital Library
    8. Feldmann, I., Schreer, O., and Kauff, P. 2003. Nonlinear depth scaling for immersive video applications. In WIAMIS.Google Scholar
    9. Georgiev, T., Zheng, C., Nayar, S., Curless, B., Salesin, D., and Intwala, C. 2006. Spatio-angular resolution tradeoffs in integral photography. In EGSR, 263–272. Google ScholarCross Ref
    10. Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. 1996. The Lumigraph. In SIGGRAPH, 43–54. Google ScholarDigital Library
    11. Hartley, R. I., and Gupta, R. 1997. Linear pushbroom cameras. IEEE PAMI 19, 9, 963–975. Google ScholarDigital Library
    12. Held, R. T., and Banks, M. S. 2008. Misperceptions in stereoscopic displays: A vision science perspective. In APGV, 23–32. Google ScholarDigital Library
    13. Holliman, N. 2004. Mapping perceived depth to regions of interest in stereoscopic images. In SPIE, vol. 5291, 117–128.Google Scholar
    14. Jones, G., Lee, D., Holliman, N., and Ezra, D. 2001. Controlling perceived depth in stereoscopic images. In SPIE, vol. 4297, 42–53.Google Scholar
    15. Kang, S. B., and Szeliski, R. 2004. Extracting view-dependent depth maps from a collection of images. IJCV 58, 2, 139–163. Google ScholarDigital Library
    16. Kim, M., Lee, S., Choi, C., Um, G.-M., Hur, N., and Kim, J. 2008. Depth scaling of multiview images for automultiscopic 3D monitors. In 3DTV-CON, 181–184.Google Scholar
    17. Koppal, S. J., Zitnick, C. L., Cohen, M. F., Kang, S. B., Ressler, B., and Colburn, A. 2011. A viewer-centric editor for 3D movies. IEEE CG&A 31, 1, 20–35. Google ScholarDigital Library
    18. Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., and Gross, M. 2010. Nonlinear disparity mapping for stereoscopic 3D. In SIGGRAPH, 75:1–75:10. Google ScholarDigital Library
    19. Levoy, M., and Hanrahan, P. 1996. Light field rendering. In SIGGRAPH, 31–42. Google ScholarDigital Library
    20. Mendiburu, B. 2009. 3D Movie Making: Stereoscopic Digital Cinema from Script to Screen. Focal Press.Google Scholar
    21. Neuman, R., 2010. Personal Communication with Robert Neuman, Chief Stereographer, Disney Animation Studios.Google Scholar
    22. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., and Hanrahan, P. 2005. Light field photography with a hand-held plenoptic camera. Technical Report CSTR 2005-02, Stanford University.Google Scholar
    23. Pajdla, T. 2002. Geometry of two-slit camera. Research Report CTU-CMP-2002-02, Czech Technical University.Google Scholar
    24. Peleg, S., Ben-Ezra, M., and Pritch, Y. 2001. Omnistereo: Panoramic stereo imaging. IEEE PAMI 23, 3, 279–290. Google ScholarDigital Library
    25. Rademacher, P., and Bishop, G. 1998. Multiple-center-of-projection images. In SIGGRAPH, 199–206. Google ScholarDigital Library
    26. Rubinstein, M., Shamir, A., and Avidan, S. 2008. Improved seam carving for video retargeting. In SIGGRAPH, 16:1–16:9. Google ScholarDigital Library
    27. Seitz, S. 2001. The space of all stereo images. In IEEE ICCV, vol. 1, 26–33.Google Scholar
    28. Thomas, F., and Johnston, O. 1995. The Illusion of Life: Disney Animation. Hyperion.Google Scholar
    29. Veeraraghavan, A., Raskar, R., Agrawal, A. K., Mohan, A., and Tumblin, J. 2007. Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing. In SIGGRAPH, 69:1–69:12. Google ScholarDigital Library
    30. Ward, B., Kang, S. B., and Bennett, E. P. 2011. Depth director: A system for adding depth to movies. IEEE CG&A 31, 1, 36–48. Google ScholarDigital Library
    31. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams, A., Horowitz, M., and Levoy, M. 2005. High performance imaging using large camera arrays. In SIGGRAPH, 765–776. Google ScholarDigital Library
    32. Wood, D. N., Finkelstein, A., Hughes, J. F., Thayer, C. E., and Salesin, D. H. 1997. Multiperspective panoramas for cel animation. In SIGGRAPH, 243–250. Google ScholarDigital Library
    33. Woods, A., Docherty, T., and Koch, R. 1993. Image distortions in stereoscopic video systems. In SPIE, vol. 1915, 36–48.Google Scholar
    34. Yang, J. C., Everett, M., Buehler, C., and McMillan, L. 2002. A real-time distributed light field camera. In EGWR, 77–86. Google ScholarDigital Library
    35. Yu, J., and McMillan, L. 2004. General linear cameras. In ECCV, 14–27.Google Scholar
    36. Yu, J., McMillan, L., and Sturm, P. 2010. Multi-perspective modelling, rendering and imaging. Computer Graphics Forum 29, 1, 227–246.Google ScholarCross Ref
    37. Zomet, A., Feldman, D., Peleg, S., and Weinshall, D. 2003. Mosaicing new views: The crossed-slits projection. IEEE PAMI 25, 6, 741–754. Google ScholarDigital Library
    38. Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3D displays. In EGSR. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org