“Modular Radiance Transfer” – ACM SIGGRAPH HISTORY ARCHIVES

“Modular Radiance Transfer”

  • 2011-SA-Technical-Paper_Loos_-Modular-Radiance-Transfer

Conference:


Type(s):


Title:

    Modular Radiance Transfer

Session/Category Title:   Light Transport


Presenter(s)/Author(s):



Abstract:


    Many rendering algorithms willingly sacrifice accuracy, favoring plausible shading with high-performance. Modular Radiance Transfer (MRT) models coarse-scale, distant indirect lighting effects in scene geometry that scales from high-end GPUs to low-end mobile platforms. MRT eliminates scene-dependent precomputation by storing compact transport on simple shapes, akin to bounce cards used in film production. These shapes’ modular transport can be instanced, warped and connected on-the-fly to yield approximate light transport in large scenes. We introduce a prior on incident lighting distributions and perform all computations in low-dimensional subspaces. An implicit lighting environment induced from the low-rank approximations is in turn used to model secondary effects, such as volumetric transport variation, higher-order irradiance, and transport through lightfields. MRT is a new approach to precomputed lighting that uses a novel low-dimensional subspace simulation of light transport to uniquely balance the need for high-performance and portable solutions, low memory usage, and fast authoring iteration.

References:


    1. Ashdown, I. 2001. Eigenvector Radiosity. Master’s thesis, Department of Computer Science, University of British Columbia.Google Scholar
    2. Bavoil, L., Sainz, M., and Dimitrov, R. 2008. Image-space horizon-based ambient occlusion. In SIGGRAPH talks, ACM, New York. Google ScholarDigital Library
    3. Chen, H. 2008. Lighting and Materials of Halo 3. In Game Developers Conference.Google Scholar
    4. Dachsbacher, C., and Stamminger, M. 2005. Reflective shadow maps. In ACM Symposium on Interactive 3D Graphics and Games. Google ScholarDigital Library
    5. Dachsbacher, C., and Stamminger, M. 2006. Splatting indirect illumination. In ACM Symposium on Intearactive 3D Graphics and Games. Google ScholarDigital Library
    6. Dachsbacher, C., Stamminger, M., Drettakis, G., and Durand, F. 2007. Implicit visibility and antiradiance for interactive global illumination. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
    7. Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. 1996. The lumigraph. In SIGGRAPH. Google ScholarDigital Library
    8. Greger, G., Shirley, P., Hubbard, P. M., and Greenberg, D. P. 1998. The irradiance volume. IEEE Computer Graphics & Applications. Google ScholarDigital Library
    9. Guerrero, P., Jeschke, S., and Wimmer, M. 2008. Realtime indirect illumination and soft shadows in dynamic scenes using spherical lights. In Computer Graphics Forum, vol. 27, 2154–2168.Google ScholarCross Ref
    10. Habel, R., and Wimmer, M. 2010. Efficient irradiance normal mapping. In ACM Symposium on Interactive 3D Graphics and Games. Google ScholarDigital Library
    11. Hašan, M., Pellacini, F., and Bala, K. 2006. Direct-to-indirect transfer for cinematic relighting. ACM Trans. Graph. 25, 3. Google ScholarDigital Library
    12. Iwasaki, K., Dobashi, Y., Yoshimoto, F., and Nishita, T. 2007. Precomputed Radiance Transfer for Dynamic Scenes Taking into Account Light Interreflection. Computer Graphics Forum, 35–44. Google ScholarCross Ref
    13. Kaplanyan, A., and Dachsbacher, C. 2010. Cascaded light propagation volumes for real-time indirect illumination. In ACM Symposium on Interactive 3D Graphics and Games. Google ScholarDigital Library
    14. Keller, A. 1997. Instant radiosity. In SIGGRAPH. Google ScholarDigital Library
    15. Kontkanen, J., Turquin, E., Holzschuch, N., and Sillion, F. 2006. Wavelet radiance transport for interactive indirect lighting. In Eurographics Symposium on Rendering. Google ScholarDigital Library
    16. Kristensen, A. W., Akenine-Möller, T., and Jensen, H. W. 2005. Precomputed local radiance transfer for real-time lighting design. ACM Trans. Graph. 24, 3. Google ScholarDigital Library
    17. Larsson, D., and Halen, H. 2009. The unique lighting of Mirror’s Edge. In Game Developers Conference.Google Scholar
    18. Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F., Sillion, F. X., and Aila, T. 2008. A meshless hierarchical representation for light transport. ACM Trans. Graph. 27, 3. Google ScholarDigital Library
    19. Lehtinen, J. 2007. A framework for precomputed and captured light transport. ACM Trans. Graph. 26, 4. Google ScholarDigital Library
    20. Levoy, M., and Hanrahan, P. 1996. Light field rendering. In SIGGRAPH. Google ScholarDigital Library
    21. Lewis, R. R., and Fournier, A. 1996. Light-driven global illumination with a wavelet representation of light transport. In Rendering Techniques. Google ScholarDigital Library
    22. Loos, B., Antani, L., Mitchell, K., Nowrouzezahrai, D., Jarosz, W., and Sloan, P.-P. 2011. Run-time implementation of modular radiance transfer. In SIGGRAPH talks, ACM, NY. Google ScholarDigital Library
    23. Martin, S., and Einarsson, P., 2010. A real-time radiosity architecture for video games. SIGGRAPH 2010 Course: Advances in Real-Time Rendering in 3D Graphics and Games.Google Scholar
    24. McTaggart, G. 2004. Half-Life 2 source shading. In Game Developers Conference.Google Scholar
    25. Meyer, M., and Anderson, J. 2006. Statistical acceleration for animated global illumination. ACM Trans. Graph. 25, 3. Google ScholarDigital Library
    26. Mittring, M. 2007. Finding next gen: Cryengine 2. In SIGGRAPH courses, ACM, New York, 97–121. Google ScholarDigital Library
    27. Nichols, G., and Wyman, C. 2009. Multiresolution splatting for indirect illumination. In ACM Symposium on Interactive 3D Graphics and Games. Google ScholarDigital Library
    28. Nichols, G., Shopf, J., and Wyman, C. 2009. Hierarchical image-space radiosity for interactive global illumination. Computer Graphics Forum 28, 4. Google ScholarDigital Library
    29. Nowrouzezahrai, D., and Snyder, J. 2009. Fast global illumination of dynamic height fields. Computer Graphics Forum 28, 4.Google ScholarDigital Library
    30. Parker, S., Martin, W., Sloan, P.-P. J., Shirley, P., Smits, B., and Hansen, C. 1999. Interactive ray tracing. In ACM Symposium on Interactive 3D Graphics. Google ScholarDigital Library
    31. Ramamoorthi, R. 2009. Precomputation-based rendering. Foundations and Trends in Computer Graphics and Vision 3, 4. Google ScholarDigital Library
    32. Ren, Z., Wang, R., Snyder, J., Zhou, K., Liu, X., Sun, B., Sloan, P.-P., Bao, H., Peng, Q., and Guo, B. 2006. Realtime soft shadows in dynamic scenes using spherical harmonic exponentiation. ACM Trans. Graph. 25, 3 (July), 977–986. Google ScholarDigital Library
    33. Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P., Dachsbacher, C., and Kautz, J. 2008. Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph.. Google ScholarDigital Library
    34. Shirley, P., and Chiu, K. 1997. A low distortion map between disk and square. Journal of Graphics Tools. Google ScholarDigital Library
    35. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21, 3. Google ScholarDigital Library
    36. Sloan, P.-P., Govindaraju, N. K., Nowrouzezahrai, D., and Snyder, J. 2007. Image-based proxy accumulation for real-time soft global illumination. In Pacific Graphics, IEEE. Google ScholarDigital Library
    37. Wang, R., Zhu, J., and Humphreys, G. 2007. Precomputed Radiance Transfer for Real-time Indirect Lighting using a Spectral Mesh Basis. Computer Graphics Forum, 13–21.Google Scholar
    38. Wang, R., Wang, R., Zhou, K., Pan, M., and Bao, H. 2009. An efficient gpu-based approach for interactive global illumination. ACM Trans. Graph. 28, 3. Google ScholarDigital Library
    39. Wicke, M., Stanton, M., and Treuille, A. 2009. Modular bases for fluid dynamics. ACM Trans. Graph. 28, 3. Google ScholarDigital Library
    40. Xu, H., Peng, Q.-S., and Liang, Y.-D. 1990. Accelerated radiosity method for complex environments. Computers and Graphics, 65–71.Google Scholar
    41. Zhukov, S., Inoes, A., and Kronin, G. 1998. An ambient light illumination model. In Rendering Techniques, Springer-Verlag.Google Scholar


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org