“Mixed integer ink selection for spectral reproduction” by Ansari, Alizadeh-Mousavi, Seidel and Babaei – ACM SIGGRAPH HISTORY ARCHIVES

“Mixed integer ink selection for spectral reproduction” by Ansari, Alizadeh-Mousavi, Seidel and Babaei

  • 2020 SA Technical Papers_Ansari_Mixed integer ink selection for spectral reproduction

Conference:


Type(s):


Title:

    Mixed integer ink selection for spectral reproduction

Session/Category Title:   Modeling and Capturing Appearance


Presenter(s)/Author(s):



Abstract:


    We introduce a novel ink selection method for spectral printing. The ink selection algorithm takes a spectral image and a set of inks as input, and selects a subset of those inks that results in optimal spectral reproduction. We put forward an optimization formulation that searches a huge combinatorial space based on mixed integer programming. We show that solving this optimization in the conventional reflectance space is intractable. The main insight of this work is to solve our problem in the spectral absorbance space with a linearized formulation. The proposed ink selection copes with large-size problems for which previous methods are hopeless. We demonstrate the effectiveness of our method in a concrete setting by lifelike reproduction of handmade paintings. For a successful spectral reproduction of high-resolution paintings, we explore their spectral absorbance estimation, efficient coreset representation, and accurate data-driven reproduction.

References:


    1. Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. 2005. Geometric approximation via coresets. Combinatorial and computational geometry 52 (2005), 1–30.Google Scholar
    2. Elad Aharoni-Mack, Yakov Shambik, and Dani Lischinski. 2017. Pigment-based recoloring of watercolor paintings. In Proceedings of the Symposium on Non-Photorealistic Animation and Rendering. 1–11.Google ScholarDigital Library
    3. Yağiz Aksoy, Tunç Ozan Aydin, Aljoša Smolić, and Marc Pollefeys. 2017. Unmixingbased soft color segmentation for image manipulation. ACM Transactions on Graphics (TOG) 36, 2 (2017), 19.Google ScholarDigital Library
    4. Maria Joao Alves and João Clímaco. 2007. A review of interactive methods for multiobjective integer and mixed-integer programming. European Journal of Operational Research 180, 1 (2007), 99–115.Google ScholarCross Ref
    5. Isaac Amidror and Roger D Hersch. 2000. Neugebauer and Demichel: Dependence and independence in n-screen superpositions for colour printing. Color Research & Application 25, 4 (2000), 267–277.Google ScholarCross Ref
    6. Azadeh Asadi. 2017. Freelance artist. http://www.azadehasadi.com/index.html. Accessed: 2018-08-15.Google Scholar
    7. Vahid Babaei and Roger D Hersch. 2016. N-Ink printer characterization with barycentric subdivision. IEEE Transactions on Image Processing 25, 7 (2016), 3023–3031.Google ScholarDigital Library
    8. Vahid Babaei, Romain Rossier, and Roger D Hersch. 2012. Reducing the number of calibration patterns for the two-by-two dot centering model. In IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 829208–829208.Google Scholar
    9. Vahid Babaei, Kiril Vidimče, Michael Foshey, Alexandre Kaspar, Piotr Didyk, and Wojciech Matusik. 2017. Color contoning for 3D printing. ACM Trans. Graph. (SIGGRAPH) 36 (2017).Google Scholar
    10. Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, James Luedtke, and Ashutosh Mahajan. 2013. Mixed-integer nonlinear optimization. Acta Numerica 22 (2013), 1–131.Google ScholarCross Ref
    11. Roy S Berns. 1993. Spectral modeling of a dye diffusion thermal transfer printer. Journal of Electronic Imaging 2, 4 (1993), 359–370.Google ScholarCross Ref
    12. Roy S Berns, Lawrence A Taplin, Philipp Urban, and Yonghui Zhao. 2008. Spectral color reproduction of paintings. In Conference on Colour in Graphics, Imaging, and Vision, Vol. 2008. Society for Imaging Science and Technology, 484–488.Google Scholar
    13. Johannes Bisschop. 2012. AIMMS Optimization Modeling. Paragon Decision Technology.Google Scholar
    14. Brian Borchers and John E Mitchell. 1994. An improved branch and bound algorithm for mixed integer nonlinear programs. Computers & Operations Research 21, 4 (1994), 359–367.Google ScholarDigital Library
    15. Alan Brunton, Can Ates Arikan, and Philipp Urban. 2015. Pushing the limits of 3d color printing: Error diffusion with translucent materials. ACM Trans. Graph. (TOG) 35, 1 (2015), 4.Google ScholarDigital Library
    16. Yongda Chen, Roy S Berns, and Lawrence A Taplin. 2004. Six color printer characterization using an optimized cellular Yule-Nielsen spectral Neugebauer model. Journal of Imaging Science and Technology 48, 6 (2004), 519–528.Google Scholar
    17. D Connah, S Westland, and MGA Thomson. 2001. Recovering spectral information using digital camera systems. Coloration technology 117, 6 (2001), 309–312.Google Scholar
    18. E Demichel. 1924. Le procédé. Société Française de Photographie 26 (1924), 17–21.Google Scholar
    19. Oskar Elek, Denis Sumin, Ran Zhang, Tim Weyrich, Karol Myszkowski, Bernd Bickel, Alexander Wilkie, and Jaroslav Křivánek. 2017. Scattering-aware Texture Reproduction for 3D Printing. ACM Trans. Graph. 36, 6, Article 241 (Nov. 2017), 15 pages. Google ScholarDigital Library
    20. Ralph M. Evans. 1948. An introduction to color. John Wiley Sons, Inc. 262–267 pages.Google Scholar
    21. Mark D Fairchild. 2013. Color appearance models. John Wiley & Sons.Google Scholar
    22. Christodoulos A Floudas. 1995. Nonlinear and mixed-integer optimization: fundamentals and applications. Oxford University Press.Google Scholar
    23. LLC Gurobi Optimization. 2018. Gurobi Optimizer Reference Manual. http://www.gurobi.comGoogle Scholar
    24. Roger David Hersch and Frédérique Crété. 2005. Improving the Yule-Nielsen modified Neugebauer model by dot surface coverages depending on the ink superposition conditions. In Electronic Imaging 2005. International Society for Optics and Photonics, 434–447.Google Scholar
    25. Rob Heylen, Dževdet Burazerovic, and Paul Scheunders. 2011. Non-linear spectral unmixing by geodesic simplex volume maximization. IEEE Journal of Selected Topics in Signal Processing 5, 3 (2011), 534–542.Google ScholarCross Ref
    26. Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. 1989. Multilayer feedforward networks are universal approximators. Neural networks 2, 5 (1989), 359–366.Google Scholar
    27. R. W. G. Hunt. 2006. The reproduction of colour. John Wiley Sons. 163–179 pages.Google Scholar
    28. Henry R Kang and Peter G Anderson. 1992. Neural network applications to the color scanner and printer calibrations. Journal of Electronic Imaging 1, 2 (1992), 125–136.Google ScholarCross Ref
    29. Nirmal Keshava and John F Mustard. 2002. Spectral unmixing. IEEE signal processing magazine 19, 1 (2002), 44–57.Google ScholarCross Ref
    30. Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google Scholar
    31. P. Kubelka and F. Munk. 1931. Ein Beitrag zur Optik der Farbanstriche. Zeitschrift für technische Physik 12 (1931), 593–601.Google Scholar
    32. Johan Lofberg. 2004. YALMIP: A toolbox for modeling and optimization in MATLAB. In 2004 IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508). IEEE, 284–289.Google ScholarCross Ref
    33. Morteza Maali Amiri and Mark D Fairchild. 2018. A strategy toward spectral and colorimetric color reproduction using ordinary digital cameras. Color (2018).Google Scholar
    34. Laurence T Maloney. 1986. Evaluation of linear models of surface spectral reflectance with small numbers of parameters. JOSA A 3, 10 (1986), 1673–1683.Google ScholarCross Ref
    35. Hugues Marchand, Alexander Martin, Robert Weismantel, and Laurence Wolsey. 2002. Cutting planes in integer and mixed integer programming. Discrete Applied Mathematics 123, 1–3 (2002), 397–446.Google ScholarDigital Library
    36. Peter Morovič, Ján Morovič, Jordi Arnabat, and Juan Manuel García-Reyero. 2012. Revisiting spectral printing: A data driven approach. In Color and Imaging Conference, Vol. 2012. Society for Imaging Science and Technology, 335–340.Google Scholar
    37. Victor Ostromoukhov. 1993. Chromaticity gamut enhancement by heptatone multicolor printing. In IST/SPIE 1993 Symposium of Electronic Imaging: Science and Technology, Conf. on Device Independent Color Imaging and Imaging Systems Integration, Vol. 1905. 139–151.Google Scholar
    38. Marios Papas, Christian Regg, Wojciech Jarosz, Bernd Bickel, Philip Jackson, Wojciech Matusik, Steve Marschner, and Markus Gross. 2013. Fabricating Translucent Materials Using Continuous Pigment Mixtures. ACM Trans. Graph. 32, 4 (July 2013), 146:1–146:12.Google ScholarDigital Library
    39. Théo Phan Van Song, Christine Andraud, and Maria V Ortiz-Segovia. 2016. Towards spectral prediction of 2.5 D prints for soft-proofing applications. In Image Processing Theory Tools and Applications (IPTA), 2016 6th International Conference on. IEEE, 1–6.Google ScholarCross Ref
    40. Joanna L Power, Brad S West, Eric J Stollnitz, and David H Salesin. 1996. Reproducing color images as duotones. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, 237–248.Google ScholarDigital Library
    41. Robert Rolleston and Raja Balasubramanian. 1993. Accuracy of various types of Neugebauer model. In Color and Imaging Conference, Vol. 1993. Society for Imaging Science and Technology, 32–37.Google Scholar
    42. Mitchell R Rosen and Maxim W Derhak. 2006. Spectral gamuts and spectral gamut mapping. In Spectral Imaging: Eighth International Symposium on Multispectral Color Science, Vol. 6062. International Society for Optics and Photonics, 60620K.Google ScholarCross Ref
    43. Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016).Google Scholar
    44. Mark Schmidt, Nicolas Le Roux, and Francis Bach. 2017. Minimizing finite sums with the stochastic average gradient. Mathematical Programming 162, 1–2 (2017), 83–112.Google ScholarDigital Library
    45. Gaurav Sharma, Wencheng Wu, and Edul N Dalal. 2005. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color research and application 30, 1 (2005), 21–30.Google Scholar
    46. Liang Shi, Vahid Babaei, Changil Kim, Michael Foshey, Yuanming Hu, Pitchaya Sitthi-Amorn, Szymon Rusinkiewicz, and Wojciech Matusik. 2018. Deep multispectral painting reproduction via multi-layer, custom-ink printing. ACM Trans. Graph. 37, 6 (Dec. 2018), 271:1–271:15.Google ScholarDigital Library
    47. Haichuan Song, Jonàs Martínez, Pierre Bedell, Noemie Vennin, and Sylvain Lefebvre. 2019. Colored fused filament fabrication. ACM Transactions on Graphics (TOG) 38, 5 (2019), 1–11.Google ScholarDigital Library
    48. Eric J Stollnitz, Victor Ostromoukhov, and David H Salesin. 1998. Reproducing color images using custom inks. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques. ACM, 267–274.Google ScholarDigital Library
    49. Denis Sumin, Tobias Rittig, Vahid Babaei, Thomas Nindel, Alexander Wilkie, Piotr Didyk, Bernd Bickel, Jaroslav Křivánek, Karol Myszkowski, and Tim Weyrich. 2019. Geometry-Aware Scattering Compensation for 3D Printing. ACM Transactions on Graphics (Proc. SIGGRAPH) 38, 4 (July 2019), 111:1–111:14. Google ScholarDigital Library
    50. Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. 2018b. A survey on deep transfer learning. In International conference on artificial neural networks. Springer, 270–279.Google ScholarCross Ref
    51. Jianchao Tan, Stephen DiVerdi, Jingwan Lu, and Yotam Gingold. 2018a. Pigmento: Pigment-based image analysis and editing. IEEE transactions on visualization and computer graphics 25, 9 (2018), 2791–2803.Google Scholar
    52. Jianchao Tan, Jyh-Ming Lien, and Yotam Gingold. 2017. Decomposing images into layers via RGB-space geometry. ACM Transactions on Graphics (TOG) 36, 1 (2017), 7.Google ScholarDigital Library
    53. Shoji Tominaga. 1996. Color control using neural networks and its application. In Color Imaging: Device-Independent Color, Color Hard Copy, and Graphic Arts, Vol. 2658. International Society for Optics and Photonics, 253–261.Google Scholar
    54. John E Tyler and Arthur C Hardy. 1940. An analysis of the original Munsell color system. JOSA 30, 12 (1940), 587–590.Google ScholarCross Ref
    55. Di-Yuan Tzeng and Roy S Berns. 1999. Spectral-based ink selection for multiple-ink printing II. Optimal ink selection. In Color and Imaging Conference, Vol. 1999. Society for Imaging Science and Technology, 182–187.Google Scholar
    56. Gunter Wyszecki and Walter Stanley Stiles. 1982. Color Science. Vol. 8. Wiley New York.Google Scholar
    57. John Arthur Carslake. Yule. 1967. Principles of color reproduction: applied to photomechanical reproduction, color photography, and the ink, paper, and other related industries. Wiley.Google Scholar


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org