“MaPa: Text-driven Photorealistic Material Painting for 3D Shapes” by Zhang and Peng
Conference:
Type(s):
Title:
- MaPa: Text-driven Photorealistic Material Painting for 3D Shapes
Presenter(s)/Author(s):
Abstract:
This paper aims to generate materials for 3D meshes from text descriptions. We propose to generate segment-wise procedural material graphs as the appearance representation, which supports high-quality rendering and provides substantial flexibility in editing. Extensive experiments demonstrate superior performance of our framework in photorealism, resolution, and editability over existing methods.
References:
[1]
Adobe. 2021. 3D design software for authoring – Adobe Substance 3D ? adobe.com. https://www.adobe.com/products/substance3d-designer.html.
[2]
Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. 2015. Material recognition in the wild with the materials in context database. In Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE Computer Society, Boston, MA, USA, 3479?3487.
[3]
Mikolaj Binkowski, Danica J. Sutherland, Michael Arbel, and Arthur Gretton. 2018. Demystifying MMD GANs. In International Conference on Learning Representations. OpenReview.net, Vancouver, BC, Canada, pp.
[4]
Joan Bruna and St?phane Mallat. 2013. Invariant scattering convolution networks. IEEE transactions on pattern analysis and machine intelligence 35, 8 (2013), 1872?1886.
[5]
John Canny. 1986. A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence 8, 6 (1986), 679?698.
[6]
Tianshi Cao, Karsten Kreis, Sanja Fidler, Nicholas Sharp, and Kangxue Yin. 2023. Texfusion: Synthesizing 3d textures with text-guided image diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE, Paris, France, 4169?4181.
[7]
Barbara Caputo, Eric Hayman, and P Mallikarjuna. 2005. Class-specific material categorisation. In Tenth IEEE International Conference on Computer Vision (ICCV?05) Volume 1, Vol. 2. IEEE, 1597?1604.
[8]
Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey Tulyakov, and Matthias Nie?ner. 2023b. Text2tex: Text-driven texture synthesis via diffusion models. arXiv preprint arXiv:2303.11396 (2023).
[9]
Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. 2023a. Fantasia3D: Disentangling Geometry and Appearance for High-quality Text-to-3D Content Creation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
[10]
Yongwei Chen, Rui Chen, Jiabao Lei, Yabin Zhang, and Kui Jia. 2022. TANGO: Text-driven Photorealistic and Robust 3D Stylization via Lighting Decomposition. In Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.). Vol. 35. Curran Associates, Inc., 30923?30936.
[11]
Zhile Chen, Feng Li, Yuhui Quan, Yong Xu, and Hui Ji. 2021. Deep texture recognition via exploiting cross-layer statistical self-similarity. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition. 5231?5240.
[12]
Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G Schwing, and Liang-Yan Gui. 2023. Sdfusion: Multimodal 3d shape completion, reconstruction, and generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4456?4465.
[13]
Mircea Cimpoi, Subhransu Maji, and Andrea Vedaldi. 2014. Deep convolutional filter banks for texture recognition and segmentation. arXiv preprint arXiv:1411.6836 (2014).
[14]
Mircea Cimpoi, Subhransu Maji, and Andrea Vedaldi. 2015. Deep filter banks for texture recognition and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition. 3828?3836.
[15]
Jasmine Collins, Shubham Goel, Kenan Deng, Achleshwar Luthra, Leon Xu, Erhan Gundogdu, Xi Zhang, Tomas F Yago Vicente, Thomas Dideriksen, Himanshu Arora, Matthieu Guillaumin, and Jitendra Malik. 2022. ABO: Dataset and Benchmarks for Real-World 3D Object Understanding. CVPR (2022).
[16]
Jan-Niklas Dihlmann, Andreas Engelhardt, and Hendrik Lensch. 2024. SIGNeRF: Scene Integrated Generation for Neural Radiance Fields. arXiv preprint arXiv:2401.01647 (2024).
[17]
Shin Fujieda, Kohei Takayama, and Toshiya Hachisuka. 2017. Wavelet convolutional neural networks for texture classification. arXiv preprint arXiv:1707.07394 (2017).
[18]
Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel Cohen-Or. 2022. An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion. https://doi.org/10.48550/ARXIV.2208.01618
[19]
Shanghua Gao, Zhijie Lin, Xingyu Xie, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. 2023. EditAnything: Empowering Unparalleled Flexibility in Image Editing and Generation. In Proceedings of the 31st ACM International Conference on Multimedia, Demo track. ACM, Ottawa, ON, Canada.
[20]
Darya Guarnera, Giuseppe Claudio Guarnera, Abhijeet Ghosh, Cornelia Denk, and Mashhuda Glencross. 2016. BRDF representation and acquisition. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 625?650.
[21]
Zhenhua Guo, Lei Zhang, and David Zhang. 2010. A completed modeling of local binary pattern operator for texture classification. IEEE transactions on image processing 19, 6 (2010), 1657?1663.
[22]
Tanmay Gupta and Aniruddha Kembhavi. 2023. Visual programming: Compositional visual reasoning without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 14953?14962.
[23]
Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems 30 (2017).
[24]
Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems 33 (2020), 6840?6851.
[25]
Diane Hu, Liefeng Bo, and Xiaofeng Ren. 2011. Toward Robust Material Recognition for Everyday Objects. In BMVC, Vol. 2. Citeseer, 6.
[26]
Ruizhen Hu, Xiangyu Su, Xiangkai Chen, Oliver Van Kaick, and Hui Huang. 2022b. Photo-to-shape material transfer for diverse structures. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1?14.
[27]
Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rushmeier. 2022a. An inverse procedural modeling pipeline for svbrdf maps. ACM Transactions on Graphics (TOG) 41, 2 (2022), 1?17.
[28]
Brian Karis. 2013. Real shading in unreal engine 4. Proc. Physically Based Shading Theory Practice 4, 3 (2013), 1.
[29]
Sagi Katz and Ayellet Tal. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM transactions on graphics (TOG) 22, 3 (2003), 954?961.
[30]
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
[31]
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, 2023. Segment anything. arXiv preprint arXiv:2304.02643 (2023).
[32]
Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. 2005. A sparse texture representation using local affine regions. IEEE transactions on pattern analysis and machine intelligence 27, 8 (2005), 1265?1278.
[33]
Beichen Li, Liang Shi, and Wojciech Matusik. 2023. End-to-End Procedural Material Capture with Proxy-Free Mixed-Integer Optimization. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1?15.
[34]
Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. 2022. Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. In International Conference on Machine Learning. PMLR, 12888?12900.
[35]
Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chandraker. 2020. Inverse rendering for complex indoor scenes: Shape, spatially-varying lighting and svbrdf from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2475?2484.
[36]
Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. 2023. Magic3D: High-Resolution Text-to-3D Content Creation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[37]
Ce Liu, Lavanya Sharan, Edward H Adelson, and Ruth Rosenholtz. 2010. Exploring features in a bayesian framework for material recognition. In 2010 ieee computer society conference on computer vision and pattern recognition. IEEE, 239?246.
[38]
Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick. 2023. Zero-1-to-3: Zero-shot One Image to 3D Object. arxiv:2303.11328 [cs.CV]
[39]
Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin Ma, Song-Hai Zhang, Marc Habermann, Christian Theobalt, 2023. Wonder3d: Single image to 3d using cross-domain diffusion. arXiv preprint arXiv:2310.15008 (2023).
[40]
Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and Daniel Cohen-Or. 2022. Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures. arXiv preprint arXiv:2211.07600 (2022).
[41]
Samuel A Minaker, Ryan H Mason, and David R Chow. 2021. Optimizing Color Performance of the Ngenuity 3-Dimensional Visualization System. Ophthalmology Science 1, 3 (2021), 100054.
[42]
Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna Tripathi, Leonidas J Guibas, and Hao Su. 2019. Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object understanding. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 909?918.
[43]
Thomas M?ller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans. Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.1145/3528223.3530127
[44]
Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and Mark Chen. 2021. Glide: Towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021).
[45]
R OpenAI. 2023. GPT-4 technical report. arXiv (2023), 2303?08774.
[46]
Keunhong Park, Konstantinos Rematas, Ali Farhadi, and Steven M Seitz. 2018. Photoshape: Photorealistic materials for large-scale shape collections. arXiv preprint arXiv:1809.09761 (2018).
[47]
Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. 2022. DreamFusion: Text-to-3D using 2D Diffusion. arXiv (2022).
[48]
Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or. 2023. Texture: Text-guided texturing of 3d shapes. arXiv preprint arXiv:2302.01721 (2023).
[49]
Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bj?rn Ommer. 2022. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 10684?10695.
[50]
Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. 2023. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
[51]
Gaurav Sharma, Wencheng Wu, and Edul N Dalal. 2005. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Fran?ais de la Couleur 30, 1 (2005), 21?30.
[52]
Prafull Sharma, Julien Philip, Micha?l Gharbi, Bill Freeman, Fredo Durand, and Valentin Deschaintre. 2023. Materialistic: Selecting similar materials in images. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1?14.
[53]
Liang Shi, Beichen Li, Milo? Ha?an, Kalyan Sunkavalli, Tamy Boubekeur, Radomir Mech, and Wojciech Matusik. 2020. Match: Differentiable material graphs for procedural material capture. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1?15.
[54]
SketchFab 2012. Sketchfab – The best 3D viewer on the web ? sketchfab.com. https://sketchfab.com/.
[55]
Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020).
[56]
Paul Upchurch and Ransen Niu. 2022. A dense material segmentation dataset for indoor and outdoor scene parsing. In European Conference on Computer Vision. Springer, 450?466.
[57]
Kai Yan, Fujun Luan, Milo? Ha?an, Thibault Groueix, Valentin Deschaintre, and Shuang Zhao. 2023. PSDR-Room: Single Photo to Scene using Differentiable Rendering. In SIGGRAPH Asia 2023 Conference Papers. 1?11.
[58]
Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. 2023. IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models. (2023).
[59]
Yu-Ying Yeh, Jia-Bin Huang, Changil Kim, Lei Xiao, Thu Nguyen-Phuoc, Numair Khan, Cheng Zhang, Manmohan Chandraker, Carl Marshall, Zhao Dong, and Zhengqin Li. 2024. TextureDreamer: Image-guided Texture Synthesis through Geometry-aware Diffusion. ArXiv abs/2401.09416 (2024).
[60]
Yu-Ying Yeh, Zhengqin Li, Yannick Hold-Geoffroy, Rui Zhu, Zexiang Xu, Milo? Ha?an, Kalyan Sunkavalli, and Manmohan Chandraker. 2022. Photoscene: Photorealistic material and lighting transfer for indoor scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18562?18571.
[61]
Xin Yu, Peng Dai, Wenbo Li, Lan Ma, Zhengzhe Liu, and Xiaojuan Qi. 2023. Texture Generation on 3D Meshes with Point-UV Diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 4206?4216.
[62]
Xianfang Zeng. 2023. Paint3D: Paint Anything 3D with Lighting-Less Texture Diffusion Models. arXiv preprint arXiv:2312.13913 (2023).
[63]
Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023. Adding Conditional Control to Text-to-Image Diffusion Models.
[64]
Junwei Zheng, Jiaming Zhang, Kailun Yang, Kunyu Peng, and Rainer Stiefelhagen. 2023. MATERobot: Material Recognition in Wearable Robotics for People with Visual Impairments. arXiv preprint arXiv:2302.14595 (2023).