“Level-of-detail quad meshing” by Ebke, Campen, Bommes and Kobbelt
Conference:
Type(s):
Title:
- Level-of-detail quad meshing
Session/Category Title: Meshing Surface, and Meshing
Presenter(s)/Author(s):
Abstract:
The most effective and popular tools for obtaining feature aligned quad meshes from triangular input meshes are based on cross field guided parametrization. These methods are incarnations of a conceptual three-step pipeline: (1) cross field computation, (2) field-guided surface parametrization, (3) quad mesh extraction. While in most meshing scenarios the user prescribes a desired target quad size or edge length, this information is typically taken into account from step 2 onwards only, but not in the cross field computation step. This turns into a problem in the presence of small scale geometric or topological features or noise in the input mesh: closely placed singularities are induced in the cross field, which are not properly reproducible by vertices in a quad mesh with the prescribed edge length, causing severe distortions or even failure of the meshing algorithm. We reformulate the construction of cross fields as well as field-guided parametrizations in a scale-aware manner which effectively suppresses densely spaced features and noise of geometric as well as topological kind. Dominant large-scale features are adequately preserved in the output by relying on the unaltered input mesh as the computational domain.
References:
1. Attene, M., Campen, M., and Kobbelt, L. 2013. Polygon mesh repairing: An application perspective. ACM Comput. Surv. 45, 2 (Mar.), 15:1–15:33.
2. Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal flattening by curvature prescription and metric scaling. Computer Graphics Forum 27, 2, 449–458.Cross Ref
3. Bischoff, S., Pavic, D., and Kobbelt, L. 2005. Automatic restoration of polygon models. ACM Trans. Graph. 24, 4 (Oct.), 1332–1352.
4. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. In Proc. SIGGRAPH 2009, ACM, New York, NY, USA, 77:1–77:10.
5. Bommes, D., Campen, M., Ebke, H.-C., Alliez, P., and Kobbelt, L. 2013. Integer-grid maps for reliable quad meshing. In Proc. SIGGRAPH 2013, ACM, New York, NY, USA, 98:1–98:12.
6. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin, D. 2013. Quad-Mesh Generation and Processing: A Survey. Computer Graphics Forum 32, 6, 51–76.
7. Campen, M., and Kobbelt, L. 2014. Dual strip weaving: Interactive design of quad layouts using elastica strips. In Proc. SIGGRAPH Asia 2014, ACM, New York, NY, USA.
8. Campen, M., and Kobbelt, L. 2014. Quad layout embedding via aligned parameterization. Computer Graphics Forum.
9. Campen, M., Bommes, D., and Kobbelt, L. 2012. Dual loops meshing: quality quad layouts on manifolds. ACM Trans. Graph. 31, 4 (July), 110:1–110:11.
10. Cohen-Steiner, D., and Morvan, J.-M. 2003. Restricted delaunay triangulations and normal cycle. In Proceedings of the nineteenth annual symposium on Computational geometry, ACM, New York, NY, USA, SCG ’03, 312–321.
11. Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial connections on discrete surfaces. Computer Graphics Forum (SGP) 29, 5, 1525–1533.Cross Ref
12. Crane, K., Pinkall, U., and Schröder, P. 2013. Robust fairing via conformal curvature flow. ACM Trans. Graph. 32, 4 (July), 61:1–61:10.
13. Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. SIGGRAPH ’99, 317–324.
14. Diamanti, O., Vaxman, A., Panozzo, D., and Sorkine-Hornung, O. 2014. Designing N-PolyVector fields with complex polynomials. Computer Graphics Forum 33, 5, 1–11.
15. Ebke, H.-C., Bommes, D., Campen, M., and Kobbelt, L. 2013. QEx: Robust quad mesh extraction. In Proc. SIGGRAPH Asia 2013, ACM, New York, NY, USA, 168:1–168:10.
16. El-Sana, J., and Varshney, A. 1997. Controlled simplification of genus for polygonal models. In Visualization ’97., Proceedings, 403–410.
17. Guskov, I., and Wood, Z. 2001. Topological noise removal. 2001 Graphics Interface Proceedings: Ottawa, Canada (June), 19–26.
18. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In Proc. SIGGRAPH ’00, 517–526.
19. Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4 (July), 59:1–59:10.
20. Kovacs, D., Myles, A., and Zorin, D. 2011. Anisotropic quadrangulation. Computer Aided Geometric Design 28, 8 (Nov.).
21. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quadcover – surface parameterization using branched coverings. Computer Graphics Forum 26, 3, 375–384.Cross Ref
22. Lai, Y.-K., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S.-M., and Gu, X. 2010. Metric-driven RoSy field design and remeshing. IEEE Trans. Vis. Comput. Graph., 95–108.
23. Li, W.-C., Vallet, B., Ray, N., and Lévy, B. 2006. Representing higher-order singularities in vector fields on piecewise linear surfaces. Visualization and Computer Graphics, IEEE Transactions on 12, 5 (sept.–oct.), 1315–1322.
24. Li, E., Lévy, B., Zhang, X., Che, W., Dong, W., and Paul, J.-C. 2011. Meshless quadrangulation by global parameterization. Computers & Graphics 35, 5, 992–1000.
25. Lipman, Y. 2012. Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph. 31, 4 (July), 108:1–108:13.
26. Meek, D., and Walton, D. 2000. On surface normal and gaussian curvature approximations given data sampled from a smooth surface. Computer Aided Geometric Design 17, 6, 521–543.
27. Myles, A., and Zorin, D. 2012. Global parametrization by incremental flattening. In Proc. SIGGRAPH 2012, ACM, New York, NY, USA, 109:1–109:11.
28. Myles, A., Pietroni, N., Kovacs, D., and Zorin, D. 2010. Feature-aligned T-meshes. In Proc. SIGGRAPH 2010, ACM, New York, NY, USA, 117:1–117:11.
29. Myles, A., Pietroni, N., and Zorin, D. 2014. Robust field-aligned global parametrization. In Proc. SIGGRAPH 2014, ACM, New York, NY, USA, 135:1–135:14.
30. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3, 55.
31. Panozzo, D., Lipman, Y., Puppo, E., and Zorin, D. 2012. Fields on symmetric surfaces. ACM Trans. Graph. 31, 4 (July), 111:1–111:12.
32. Panozzo, D., Puppo, E., Tarini, M., and Sorkine-Hornung, O. 2014. Frame fields: Anisotropic and non-orthogonal cross fields. In Proc. SIGGRAPH 2014, ACM, New York, NY, USA, 134:1–134:11.
33. Pietroni, N., Tarini, M., Sorkine, O., and Zorin, D. 2011. Global parametrization of range image sets. ACM Transactions on Graphics, Proceedings of SIGGRAPH Asia 2011 30, 6.
34. Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4 (Oct.), 1460–1485.
35. Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2 (May), 10:1–10:13.
36. Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1 (Dec.), 1:1–1:11.
37. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graph. 27 (August), 77:1–77:11.
38. Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., and Cignoni, P. 2011. Simple quad domains for field aligned mesh parametrization. In Proc. SIGGRAPH Asia 2011, ACM, New York, NY, USA, 142:1–142:12.
39. Taubin, G. 1995. A signal processing approach to fair surface design. In In Proc. SIGGRAPH ’95, ACM, New York, NY, USA, 351–358.
40. Umenhoffer, T., Szécsi, L., and Szirmay-Kalos, L. 2011. Hatching for motion picture production. Computer Graphics Forum 30, 2, 533–542.Cross Ref
41. Zhou, Q.-Y., Ju, T., and Hu, S.-M. 2007. Topology repair of solid models using skeletons. Visualization and Computer Graphics, IEEE Transactions on 13, 4 (July), 675–685.


