“Learning-Based Bending Stiffness Parameter Estimation by a Drape Tester” by Feng, Huang, Xu and Wang
Conference:
Type(s):
Title:
- Learning-Based Bending Stiffness Parameter Estimation by a Drape Tester
Session/Category Title: Cloth and Hair Simulation
Presenter(s)/Author(s):
Abstract:
Real-world fabrics often possess complicated nonlinear, anisotropic bending stiffness properties. Measuring the physical parameters of such properties for physics-based simulation is difficult yet unnecessary, due to the persistent existence of numerical errors in simulation technology. In this work, we propose to adopt a simulation-in-the-loop strategy: instead of measuring the physical parameters, we estimate the simulation parameters to minimize the discrepancy between reality and simulation. This strategy offers good flexibility in test setups, but the associated optimization problem is computationally expensive to solve by numerical methods. Our solution is to train a regression-based neural network for inferring bending stiffness parameters, directly from drape features captured in the real world. Specifically, we choose the Cusick drape test method and treat multiple-view depth images as the feature vector. To effectively and efficiently train our network, we develop a highly expressive and physically validated bending stiffness model, and we use the traditional cantilever test to collect the parameters of this model for 618 real-world fabrics. Given the whole parameter data set, we then construct a parameter subspace, generate new samples within the sub-space, and finally simulate and augment synthetic data for training purposes. The experiment shows that our trained system can replace cantilever tests for quick, reliable and effective estimation of simulation-ready parameters. Thanks to the use of the system, our simulator can now faithfully simulate bending effects comparable to those in the real world.
References:
1. ASTM. 2016. ASTM D4032: Standard Test Method for Stiffness of Fabric by the Circular Bend Procedure. (Dec. 2016).
2. ASTM. 2018. ASTM D1388: Standard Test Method for Stiffness of Fabrics. (July 2018).
3. David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings of SIGGRAPH 98 (Computer Graphics Proceedings, Annual Conference Series), Eugene Fiume (Ed.). ACM, 43–54.
4. Jonathan T. Barron and Jitendra Malik. 2013. Intrinsic Scene Properties from a Single RGB-D Image. In 2013 IEEE Conference on Computer Vision and Pattern Recognition. 17–24.
5. Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun. 2006. A Quadratic Bending Model for Inextensible Surfaces. In Proceedings of SGP (Cagliari, Sardinia, Italy). 227–230.
6. Kiran S. Bhat, Christopher D. Twigg, Jessica K. Hodgins, Pradeep K. Khosla, Zoran Popović, and Steven M. Seitz. 2003. Estimating Cloth Simulation Parameters from Video. In Proceedings of SCA (San Diego, California). 37–51.
7. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Wojciech Matusik, Hanspeter Pfister, and Markus Gross. 2009. Capture and Modeling of Non-linear Heterogeneous Soft Tissue. ACM Trans. Graph. (SIGGRAPH) 28, 3, Article 89 (July 2009), 9 pages.
8. Jeannette Bohg, Javier Romero, Alexander Herzog, and Stefan Schaal. 2014. Robot Arm Pose Estimation through Pixel-Wise Part Classification. In 2014 IEEE International Conference on Robotics and Automation (ICRA). 3143–3150.
9. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. (SIGGRAPH) 33, 4, Article 154 (July 2014), 11 pages.
10. Katherine L. Bouman, Bei Xiao, Peter Battaglia, and William T. Freeman. 2013. Estimating the Material Properties of Fabric from Video. In 2013 IEEE International Conference on Computer Vision. 1984–1991.
11. Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust Treatment of Collisions, Contact and Friction for Cloth Animation. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July 2002), 594–603.
12. Robert Bridson, Sebastian Marino, and Ronald Fedkiw. 2003. Simulation of Clothing with Folds and Wrinkles. In Proceedings of SCA (San Diego, California). 28–36.
13. Enric Carrera-Gallissa, Xavier Capdevila, and Josep Valldeperas. 2017. Evaluating Drape Shape in Woven Fabrics. The Journal of the Textile Institute 108, 3 (2017), 325–336.
14. Satyasaran Changdar, Bivas Bhaumik, and Soumen De. 2021. Physics-Based Smart Model for Prediction of Viscosity of Nanofluids Containing Nanoparticles Using Deep Learning. Journal of Computational Design and Engineering 8, 2 (2021), 600–614.
15. Zhili Chen, Renguo Feng, and Huamin Wang. 2013. Modeling Friction and Air Effects between Cloth and Deformable Bodies. ACM Trans. Graph. (SIGGRAPH) 32, 4 (July 2013), 8 pages.
16. Lénaïc Chizat, Pierre Roussillon, Flavien Léger, François-Xavier Vialard, and Gabriel Peyré. 2020. Faster Wasserstein Distance Estimation with the Sinkhorn Divergence. In Proceedings of the 34th International Conference on Neural Information Processing Systems (Vancouver, BC, Canada). Article 190, 13 pages.
17. Kwang-Jin Choi and Hyeong-Seok Ko. 2002. Stable but Responsive Cloth. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July 2002), 604–611.
18. CLO. 2022. Fabric Kit Manual. https://support.clo3d.com/hc/en-us/articles/360041074334-Fabric-Kit-Manual.
19. David Clyde, Joseph Teran, and Rasmus Tamstorf. 2017. Modeling and Data-Driven Parameter Estimation for Woven Fabrics. In Proceedings of SCA (Los Angeles, California). Article 17, 11 pages.
20. Gordon E. Cusick. 1965. The Dependence of Fabric Drape on Bending and Shear Stiffness. Journal of the Textile Institute 56, 11 (1965), 596–606.
21. Abe Davis, Katherine L. Bouman, Justin G. Chen, Michael Rubinstein, Oral Büyüköztürk, Frédo Durand, and William T. Freeman. 2017. Visual Vibrometry: Estimating Material Properties from Small Motions in Video. IEEE Transactions on Pattern Analysis and Machine Intelligence 39, 4 (2017), 732–745.
22. Richard O. Duda and Peter E. Hart. 1973. Pattern Classification and Scene Analysis. A Wiley-Interscience publication.
23. Elliot English and Robert Bridson. 2008. Animating Developable Surfaces Using Non-conforming Elements. ACM Trans. Graph. (SIGGRAPH) 27, 3 (Aug. 2008), 1–5.
24. Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A Practical Gauss-Seidel Method for Stable Soft Body Dynamics. ACM Trans. Graph. (SIGGRAPH Asia) 35, 6, Article 214 (Nov. 2016), 9 pages.
25. Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. 2019. Deep Inverse Rendering for High-Resolution SVBRDF Estimation from an Arbitrary Number of Images. ACM Trans. Graph. (SIGGRAPH) 38, 4, Article 134 (July 2019), 15 pages.
26. Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete shells. In Proceedings of SCA (San Diego, California). 62–67.
27. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.
28. ISO. 2008. ISO 9073-9: Textiles – Test methods for nonwovens – Part 9: Determination of drapability including drape coefficient. (March 2008).
29. Eunjung Ju and Myung Geol Choi. 2020. Estimating Cloth Simulation Parameters from a Static Drape Using Neural Networks. IEEE Access 8 (2020), 195113–195121.
30. Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating Knitted Cloth at the Yarn Level. ACM Trans. Graph. (SIGGRAPH) 27, 3, Article 65 (Aug. 2008), 9 pages.
31. Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. Efficient Yarn-Based Cloth with Adaptive Contact Linearization. ACM Trans. Graph. (SIGGRAPH) 29, 4, Article 105 (July 2010), 10 pages.
32. Kaizhang Kang, Minyi Gu, Cihui Xie, Xuanda Yang, Hongzhi Wu, and Kun Zhou. 2021. Neural Reflectance Capture in the View-Illumination Domain. IEEE Transactions on Visualization and Computer Graphics 1 (2021), 1–1.
33. Kato Tech. 2022. KES-FB2-AUTO-A Pure Bending Tester. https://english.keskato.co.jp.
34. Diederik P. Kingma and Max Welling. 2019. An Introduction to Variational Autoencoders. Foundations and Trends in Machine Learning 12, 4 (2019), 307–392.
35. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems – Volume 1 (Lake Tahoe, Nevada). 1097–1105.
36. Shoji Kunitomo, Shinsuke Nakamura, and Shigeo Morishima. 2010. Optimization of Cloth Simulation Parameters by Considering Static and Dynamic Features. In ACM SIGGRAPH 2010 Posters. Article 15, 1 pages.
37. Jie Li, Gilles Daviet, Rahul Narain, Florence Bertails-Descoubes, Matthew Overby, George E. Brown, and Laurence Boissieux. 2018. An Implicit Frictional Contact Solver for Adaptive Cloth Simulation. ACM Trans. Graph. (SIGGRAPH) 37, 4, Article 52 (July 2018), 15 pages.
38. Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast Simulation of Mass-Spring Systems. ACM Trans. Graph. (SIGGRAPH Asia) 32, 6, Article 214 (Nov. 2013), 7 pages.
39. Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence Boissieux. 2018. Inverse Elastic Shell Design with Contact and Friction. ACM Trans. Graph. (SIGGRAPH Asia) 37, 6, Article 201 (Dec. 2018), 16 pages.
40. Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. 2003. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. In Visualization and mathematics III. Springer, 35–57.
41. Microsoft. 2022. Azure Kinect DK. https://azure.microsoft.com/en-us/services/kinect-dk.
42. Eder Miguel, Derek Bradley, Bernhard Thomaszewski, Bernd Bickel, Wojciech Matusik, Miguel A. Otaduy, and Steve Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Comput. Graph. Forum (Eurographics) 31, 2 (May 2012), 519–528.
43. Eder Miguel, Rasmus Tamstorf, Derek Bradley, Sara C. Schvartzman, Bernhard Thomaszewski, Bernd Bickel, Wojciech Matusik, Steve Marschner, and Miguel A. Otaduy. 2013. Modeling and Estimation of Internal Friction in Cloth. ACM Trans. Graph. (SIGGRAPH Asia) 32, 6, Article 212 (Nov. 2013), 10 pages.
44. Vishnu Mohan M S and Vivek Menon. 2021. Measuring Viscosity of Fluids: A Deep Learning Approach Using a CNN-RNN Architecture. In The First International Conference on AI-ML-Systems (AIMLSystems 2021). Article 12, 5 pages.
45. Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005. Meshless Deformations Based on Shape Matching. ACM Trans. Graph. (SIGGRAPH) 24, 3 (July 2005), 471–478.
46. Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6, Article 152 (Nov. 2012), 10 pages.
47. Dinesh K. Pai, Kees van den Doel, Doug L. James, Jochen Lang, John E. Lloyd, Joshua L. Richmond, and Som H. Yau. 2001. Scanning Physical Interaction Behavior of 3D Objects. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (SIGGRAPH 2001). 87–96.
48. Dinesh K. Pai, Austin Rothwell, Pearson Wyder-Hodge, Alistair Wick, Ye Fan, Egor Larionov, Darcy Harrison, Debanga Raj Neog, and Cole Shing. 2018. The Human Touch: Measuring Contact with Real Human Soft Tissues. ACM Trans. Graph. (SIGGRAPH) 37, 4, Article 58 (July 2018), 12 pages.
49. Abdullah-Haroon Rasheed, Victor Romero, Florence Bertails-Descoubes, Stefanie Wuhrer, Jean-Sébastien Franco, and Arnaud Lazarus. 2020. Learning to Measure the Static Friction Coefficient in Cloth Contact. In IEEE Conference on Computer Vision and Pattern Recognition (Seattle, United States). 9909–9918.
50. Abdullah Haroon Rasheed, Victor Romero, Florence Bertails-Descoubes, Stefanie Wuhrer, Jean-Sebastien Franco, and Arnaud Lazarus. 2021. A Visual Approach to Measure Cloth-Body and Cloth-Cloth Friction. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021), 1–1.
51. Victor Romero, Mickaël Ly, Abdullah Haroon Rasheed, Raphaël Charrondière, Arnaud Lazarus, Sébastien Neukirch, and Florence Bertails-Descoubes. 2021. Physical Validation of Simulators in Computer Graphics: A New Framework Dedicated to Slender Elastic Structures and Frictional Contact. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 66 (July 2021), 19 pages.
52. Ribeiro Rui, André Pilastri, Carla Moura, Filipe Rodrigues, Rita Rocha, Morgado José, and Cortez Paulo. 2020. Predicting Physical Properties of Woven Fabrics via Automated Machine Learning and Textile Design and Finishing Features. In Artificial Intelligence Applications and Innovations, Vol. 584. 244–255.
53. Andrew Selle, Jonathan Su, Geoffrey Irving, and Ronald Fedkiw. 2009. Robust High-Resolution Cloth Using Parallelism, History-Based Collisions, and Accurate Friction. IEEE Transactions on Visualization and Computer Graphics 15, 2 (March 2009), 339–350.
54. Shirin Shahriari, Gholamreza Pazuki, and Bandar Duraya Al-Anazi. 2010. Neutral Network Estimates Poisson’s Ratio, Young’s Modulus. Oil and Gas Journal 108, 19 (2010), 47–50.
55. Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. In International Conference on Learning Representations, Yoshua Bengio and Yann LeCun (Eds.). 14 pages.
56. Taber Industries. 2022. Cantilever Tester – Model 145. http://www.ordertaber.com.
57. Rasmus Tamstorf and Eitan Grinspun. 2013. Discrete Bending Forces and Their Jacobians. Graphical Models 75, 6 (2013), 362–370.
58. Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning (ICML) 2019, Vol. 97. PMLR, 6105–6114.
59. Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018. I-Cloth: Incremental Collision Handling for GPU-Based Interactive Cloth Simulation. ACM Trans. Graph. (SIGGRAPH Asia) 37, 6 (Dec. 2018), 10 pages.
60. Pascal Volino, Nadia Magnenat-Thalmann, and Francois Faure. 2009. A Simple Approach to Nonlinear Tensile Stiffness for Accurate Cloth Simulation. ACM Trans. Graph. 28, 4, Article 105 (Sept. 2009), 16 pages.
61. Bin Wang, Longhua Wu, KangKang Yin, Uri Ascher, Libin Liu, and Hui Huang. 2015. Deformation Capture and Modeling of Soft Objects. ACM Trans. Graph. (SIGGRAPH) 34, 4, Article 94 (July 2015), 12 pages.
62. Huamin Wang. 2015. A Chebyshev Semi-Iterative Approach for Accelerating Projective and Position-Based Dynamics. ACM Trans. Graph. (SIGGRAPH Asia) 34, 6, Article 246 (Oct. 2015), 9 pages.
63. Huamin Wang, James F. O’Brien, and Ravi Ramamoorthi. 2011. Data-Driven Elastic Models for Cloth: Modeling and Measurement. ACM Trans. Graph. (SIGGRAPH) 30, 4, Article 71 (July 2011), 9 pages.
64. Huamin Wang and Yin Yang. 2016. Descent Methods for Elastic Body Simulation on the GPU. ACM Trans. Graph. (SIGGRAPH Asia) 35, 6, Article 212 (Nov. 2016), 10 pages.
65. Longhua Wu, Botao Wu, Yin Yang, and Huamin Wang. 2020. A Safe and Fast Repulsion Method for GPU-Based Cloth Self Collisions. ACM Trans. Graph. 40, 1, Article 5 (Dec. 2020), 18 pages.
66. Shan Yang, Junbang Liang, and Ming C. Lin. 2017. Learning-Based Cloth Material Recovery from Video. In IEEE International Conference on Computer Vision. 4393–4403.


