“Inverse volume rendering with material dictionaries” by Gkioulekas, Zhao, Bala, Zickler and Levin
Conference:
Type(s):
Title:
- Inverse volume rendering with material dictionaries
Session/Category Title: Light & Sound
Presenter(s)/Author(s):
Abstract:
Translucent materials are ubiquitous, and simulating their appearance requires accurate physical parameters. However, physically-accurate parameters for scattering materials are difficult to acquire. We introduce an optimization framework for measuring bulk scattering properties of homogeneous materials (phase function, scattering coefficient, and absorption coefficient) that is more accurate, and more applicable to a broad range of materials. The optimization combines stochastic gradient descent with Monte Carlo rendering and a material dictionary to invert the radiative transfer equation. It offers several advantages: (1) it does not require isolating single-scattering events; (2) it allows measuring solids and liquids that are hard to dilute; (3) it returns parameters in physically-meaningful units; and (4) it does not restrict the shape of the phase function using Henyey-Greenstein or any other low-parameter model. We evaluate our approach by creating an acquisition setup that collects images of a material slab under narrow-beam RGB illumination. We validate results by measuring prescribed nano-dispersions and showing that recovered parameters match those predicted by Lorenz-Mie theory. We also provide a table of RGB scattering parameters for some common liquids and solids, which are validated by simulating color images in novel geometric configurations that match the corresponding photographs with less than 5% error.
References:
1. Antyufeev, V. 2000. Monte Carlo method for solving inverse problems of radiation transfer, vol. 20. Inverse and Ill-Posed Problems Series, V.S.P. International Science.
2. Bal, G. 2009. Inverse transport theory and applications. Inverse Problems 25, 5.
3. Ben-Artzi, A., Egan, K., Durand, F., and Ramamoorthi, R. 2008. A precomputed polynomial representation for interactive BRDF editing with global illumination. ACM Trans. Graph. 27, 2.
4. Bhate, N., and Tokuta, A. 1992. Photorealistic volume rendering of media with directional scattering. In Third Eurographics Workshop on Rendering.
5. Bohren, C., and Huffman, D. 1983. Absorption and scattering of light by small particles. Wiley-Vch.
6. Bottou, L., and Bousquet, O. 2008. The Tradeoffs of Large Scale Learning. NIPS.
7. Chandrasekhar, S. 1960. Radiative transfer. Dover.
8. Chen, C., Lu, J., Ding, H., Jacobs, K., Du, Y., Hu, X., et al. 2006. A primary method for determination of optical parameters of turbid samples and application to intralipid between 550 and 1630 nm. Optics Express 14, 16.
9. Debevec, P., Hawkins, T., Tchou, C., Duiker, H., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proceedings of SIGGRAPH 2000, Annual Conference Series.
10. Donner, C., and Jensen, H. 2005. Light diffusion in multilayered translucent materials. ACM Trans. Graph. 24, 3.
11. Donner, C., Weyrich, T., d’Eon, E., Ramamoorthi, R., and Rusinkiewicz, S. 2008. A layered, heterogeneous reflectance model for acquiring and rendering human skin. ACM Trans. Graph. 27, 5.
12. Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. 2008. Efficient projections onto the l1-ball for learning in high dimensions. ICML.
13. Dutré, P., Bala, K., and Bekaert, P. 2006. Advanced global illumination. AK Peters, Ltd.
14. Fleming, R., and Bülthoff, H. 2005. Low-level image cues in the perception of translucent materials. ACM Transactions on Applied Perception (TAP) 2, 3.
15. Frisvad, J., Christensen, N., and Jensen, H. 2007. Computing the scattering properties of participating media using lorenz-mie theory. ACM Trans. Graph. 26, 3.
16. Fuchs, C., Chen, T., Goesele, M., Theisel, H., and Seidel, H. 2007. Density estimation for dynamic volumes. Computers & Graphics 31, 2.
17. Ghosh, A., Achutha, S., Heidrich, W., and O’Toole, M. 2007. BRDF acquisition with basis illumination. IEEE CVPR.
18. Gkioulekas, I., Xiao, B., Zhao, S., Adelson, E., Zickler, T., and Bala, K. 2013. Understanding the role of phase function in translucent appearance. To appear in ACM Trans. Graph. 32, 5.
19. Goesele, M., Lensch, H., Lang, J., Fuchs, C., and Seidel, H. 2004. Disco: acquisition of translucent objects. ACM Trans. Graph. 23, 3.
20. Gu, J., Nayar, S., Grinspun, E., Belhumeur, P., and Ramamoorthi, R. 2008. Compressive structured light for recovering inhomogeneous participating media. ECCV.
21. Gupta, M., Agrawal, A., Veeraraghavan, A., and Narasimhan, S. 2011. Structured light 3D scanning in the presence of global illumination. IEEE CVPR.
22. Hasinoff, S., Durand, F., and Freeman, W. 2010. Noise-optimal capture for high dynamic range photography. IEEE CVPR.
23. Hawkins, T., Einarsson, P., and Debevec, P. 2005. Acquisition of time-varying participating media. ACM Trans. Graph. 24, 3.
24. Henyey, L., and Greenstein, J. 1941. Diffuse radiation in the galaxy. The Astrophysical Journal 93.
25. Holroyd, M., and Lawrence, J. 2011. An analysis of using high-frequency sinusoidal illumination to measure the 3d shape of translucent objects. IEEE CVPR.
26. Hullin, B., Fuchs, M., Ajdin, B., Ihrke, I., Seidel, H., and Lensch, H. 2008. Direct visualization of real-world light transport. Vision, Modeling, and Visualization 2008.
27. Ishimaru, A. 1978. Wave propagation and scattering in random media. Wiley-IEEE.
28. Jensen, H., Marschner, S., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of SIGGRAPH 2001, Annual Conference Series.
29. Jensen, H. 2001. Realistic image synthesis using photon mapping. AK Peters, Ltd.
30. Johnson, C., and Gabriel, D. 1994. Laser light scattering. Dover.
31. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. 25, 3.
32. LeVeque, R. 2007. Finite Difference Methods for Ordinary and Partial Differential Equations, Steady-State and Time-Dependent Problems. SIAM.
33. McCormick, N., and Sanchez, R. 1981. Inverse problem transport calculations for anisotropic scattering coefficients. Journal of Mathematical Physics 22, 199.
34. Mishchenko, M., Travis, L., and Lacis, A. 2006. Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge University.
35. Mukaigawa, Y., Yagi, Y., and Raskar, R. 2010. Analysis of light transport in scattering media. IEEE CVPR.
36. Narasimhan, S., Gupta, M., Donner, C., Ramamoorthi, R., Nayar, S., and Jensen, H. 2006. Acquiring scattering properties of participating media by dilution. ACM Trans. Graph. 25, 3.
37. Nayar, S., Krishnan, G., Grossberg, M., and Raskar, R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25, 3.
38. O’Toole, M., and Kutulakos, K. N. 2010. Optical computing for fast light transport analysis. ACM Trans. Graph. 29, 6.
39. Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., and Dutré, P. 2006. A compact factored representation of heterogeneous subsurface scattering. ACM Trans. Graph. 25, 3.
40. Pine, D., Weitz, D., Zhu, J., and Herbolzheimer, E. 1990. Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit. Journal de Physique 51, 18.
41. Prahl, S., van Gemert, M., and Welch, A. 1993. Determining the optical properties of turbid media by using the adding–doubling method. Applied optics 32, 4.
42. Pusey, P. 1999. Suppression of multiple scattering by photon cross-correlation techniques. Current opinion in colloid & interface science 4, 3.
43. Ramamoorthi, R., and Hanrahan, P. 2001. A signal-processing framework for inverse rendering. In Proceedings of SIGGRAPH 2001, Annual Conference Series.
44. Reynolds, L., and McCormick, N. 1980. Approximate two-parameter phase function for light scattering. JOSA 70, 10.
45. Rushmeier, H., and Torrance, K. 1987. The zonal method for calculating light intensities in the presence of a participating medium. In Computer Graphics, vol. 21.
46. Singer, J., Grünbaum, F., Kohn, P., Zubelli, J., et al. 1990. Image reconstruction of the interior of bodies that diffuse radiation. Science 248, 4958.
47. Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H. 2005. Modeling and rendering of quasi-homogeneous materials. ACM Trans. Graph. 24, 3.
48. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., and Shum, H. 2008. Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27, 1.
49. Wu, D., O’Toole, M., Velten, A., Agrawal, A., and Raskar, R. 2012. Decomposing global light transport using time of flight imaging. IEEE CVPR.
50. Wyman, D., Patterson, M., and Wilson, B. 1989. Similarity relations for the interaction parameters in radiation transport. Applied optics 28, 24.


