“Inverse procedural modeling of facade layouts” by Wonka, Wu, Yan, Dong and Zhang

  • ©

Conference:


Type(s):


Title:

    Inverse procedural modeling of facade layouts

Session/Category Title:   Shape Analysis


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    In this paper, we address the following research problem: How can we generate a meaningful split grammar that explains a given facade layout? To evaluate if a grammar is meaningful, we propose a cost function based on the description length and minimize this cost using an approximate dynamic programming framework. Our evaluation indicates that our framework extracts meaningful split grammars that are competitive with those of expert users, while some users and all competing automatic solutions are less successful.

References:


    1. Aliaga, D. G., Rosen, P. A., and Bekins, D. R. 2007. Style grammars for interactive visualization of architecture. IEEE Trans. on Vis. and Comp. Graph. 13, 4, 786–797. Google ScholarDigital Library
    2. Bao, F., Schwarz, M., and Wonka, P. 2013. Procedural facade variations from a single layout. ACM Trans. Graph. 32, 1, 8:1–8:13. Google ScholarDigital Library
    3. Becker, S. 2009. Generation and application of rules for quality dependent facade reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing 64, 6, 640–653.Google ScholarCross Ref
    4. Bekins, D. R., and Aliaga, D. G. 2005. Build-by-number: Rear-ranging the real world to visualize novel architectural spaces. In Proceedings of 16th IEEE Visualization, 143–150.Google Scholar
    5. Bokeloh, M., Wand, M., and Seidel, H.-P. 2010. A connection between partial symmetry and inverse procedural modeling. ACM TOG (SIGGRAPH) 29, 104:1–104:10. Google ScholarDigital Library
    6. Carrascosa, R., Coste, F., Gallé, M., and Infante-Lopez, G. 2010. Choosing word occurrences for the smallest grammar problem. In Proceedings of the 4th international conference on Language and Automata Theory and Applications, 154–165. Google ScholarDigital Library
    7. Carrascosa, R., Coste, F., Gallé, M., and Infante-Lopez, G. 2012. Searching for smallest grammars on large sequences and application to DNA. Journal of Discrete Algorithms 11, 62–72. Google ScholarDigital Library
    8. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., and Shelat, A. 2005. The smallest grammar problem. IEEE Transactions on Information Theory 51, 7, 2554–2576. Google ScholarDigital Library
    9. de Marcken, C. G. 1996. Unsupervised Language Acquisition. PhD thesis, MIT, Cambridge, MA. Google ScholarDigital Library
    10. Hohmann, B., Krispel, U., Havemann, S., and Fellner, D. 2009. Cityfit – high-quality urban reconstructions by fitting shape grammars to images and derived textured point clouds. In Proceedings of the 3rd ISPRS International Workshop 3D-ARCH 2009: “3D Virtual Reconstruction and Visualization of Complex Architectures”.Google Scholar
    11. Lefebvre, S., Hornus, S., and Lasram, A. 2010. By-example synthesis of architectural textures. ACM TOG (SIGGRAPH) 29, 4, 84:1–84:8. Google ScholarDigital Library
    12. Lin, J., Cohen-Or, D., Zhang, H., Liang, C., Sharf, A., Deussen, O., and Chen, B. 2011. Structure-preserving retargeting of irregular 3D architecture. ACM TOG (SIGGRAPH Asia) 30, 6, 183:1–183:10. Google ScholarDigital Library
    13. Lipp, M., Wonka, P., and Wimmer, M. 2008. Interactive visual editing of grammars for procedural architecture. ACM TOG (SIGGRAPH) 27, 3, 102:1–102:10. Google ScholarDigital Library
    14. Martinovic, A., and Van Gool, L. 2013. Bayesian grammar learning for inverse procedural modeling. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, 201–208. Google ScholarDigital Library
    15. Mathias, M., Martinovic, A., Weissenberg, J., and Gool, L. V. 2011. Procedural 3D building reconstruction using shape grammars and detectors. In Proc. of 3DIMPVT, 304–311. Google ScholarDigital Library
    16. Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Gool, L. V. 2006. Procedural modeling of buildings. ACM TOG (SIGGRAPH) 25, 3, 614–623. Google ScholarDigital Library
    17. Müller, P., Zeng, G., Wonka, P., and Gool, L. V. 2007. Image-based procedural modeling of facades. ACM TOG (SIGGRAPH) 26, 3, 85:1–85:9. Google ScholarDigital Library
    18. Musialski, P., Wimmer, M., and Wonka, P. 2012. Interactive coherence-based façade modeling. Computer Graphics Forum (Proc. of Eurographics) 31, 2, 661–670. Google ScholarDigital Library
    19. Musialski, P., Wonka, P., Aliaga, D. G., Wimmer, M., van Gool, L., and Purgathofer, W. 2013. A survey of urban reconstruction. Computer Graphics Forum 32, 6, 146–177. Google ScholarDigital Library
    20. Patow, G. 2012. User-friendly graph editing for procedural modeling of buildings. IEEE Computer Graphics and Applications 32, 2, 66–75. Google ScholarDigital Library
    21. Powell, W. B. 2011. Approximate Dynamic Programming: Solving the curses of dimensionality, 2nd ed. John Wiley and Sons.Google Scholar
    22. Prusinkiewicz, P., and Lindenmayer, A. 1990. The Algorithmic Beauty of Plants. Springer-Verlag, New York. Google ScholarDigital Library
    23. Riemenschneider, H., Krispel, U., Thaller, W., Donoser, M., Havemann, S., Fellner, D., and Bischof, H. 2012. Irregular lattices for complex shape grammar facade parsing. In CVPR, 1640–1647. Google ScholarDigital Library
    24. Ripperda, N., and Brenner, C. 2009. Application of a formal grammar to facade reconstruction in semiautomatic and automatic environments. In Proc. of 12th AGILE Conf. on GIScience.Google Scholar
    25. Simon, L., Teboul, O., Koutsourakis, P., and Paragios, N. 2011. Random exploration of the procedural space for single-view 3D modeling of buildings. International Journal of Computer Vision 93, 253–271. Google ScholarDigital Library
    26. Talton, J. O., Yang, L., Kumar, R., Lim, M., Goodman, N. D., and Mech, R. 2012. Learning design patterns with bayesian grammar induction. In UIST, 63–74. Google ScholarDigital Library
    27. Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., and Paragios, N. 2011. Shape grammar parsing via reinforcement learning. In CVPR, 2273–2280. Google ScholarDigital Library
    28. Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., and Paragios, N. 2013. Parsing facades with shape grammars and reinforcement learning. IEEE PAMI 35, 7, 1744–1756. Google ScholarDigital Library
    29. Toshev, A., Mordohai, P., and Taskar, B. 2010. Detecting and parsing architecture at city scale from range data. In CVPR, 398–405.Google Scholar
    30. Vanegas, C. A., Aliaga, D. G., and Benevs, B. 2010. Building reconstruction using manhattan-world grammars. In CVPR, 358–365.Google Scholar
    31. Št’ava, O., Beneš, B., Měch, R., Aliaga, D. G., and Krištof, P. 2010. Inverse procedural modeling by automatic generation of 1-systems. Computer Graphics Forum 29, 2, 665–674.Google ScholarCross Ref
    32. Watson, B., and Wonka, P. 2008. Procedural methods for urban modeling. IEEE Computer Graphics and Applications 28, 3, 16–17. Google ScholarDigital Library
    33. Weissenberg, J., Riemenschneider, H., Prasad, M., and Van Gool, L. 2013. Is there a procedural logic to architecture? In CVPR, 185–192. Google ScholarDigital Library
    34. Wonka, P., Wimmer, M., Sillion, F., and Ribarsky, W. 2003. Instant architecture. ACM TOG (SIGGRAPH) 22, 3, 669–677. Google ScholarDigital Library
    35. Yeh, Y.-T., Breeden, K., Yang, L., Fisher, M., and Hanrahan, P. 2013. Synthesis of tiled patterns using factor graphs. ACM Trans. Graph. 32, 1, 3:1–3:13. Google ScholarDigital Library
    36. Zhang, H., Xu, K., Jiang, W., Lin, J., Cohen-Or, D., and Chen, B. 2013. Layered analysis of irregular facades via symmetry maximization. ACM TOG (SIGGRAPH) 32, 4, 121:1–121:10. Google ScholarDigital Library
    37. Zhao, P., Yang, L., Zhang, H., and Quan, L. 2012. Per-pixel translational symmetry detection, optimization, and segmentation. In CVPR, 526–533. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: