“Inverse elastic shell design with contact and friction” – ACM SIGGRAPH HISTORY ARCHIVES

“Inverse elastic shell design with contact and friction”

  • 2018 SA Technical Papers_Ly_Inverse elastic shell design with contact and friction

Conference:


Type(s):


Title:

    Inverse elastic shell design with contact and friction

Session/Category Title:   Fabulously computed fashion


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We propose an inverse strategy for modeling thin elastic shells physically, just from the observation of their geometry. Our algorithm takes as input an arbitrary target mesh, and interprets this configuration automatically as a stable equilibrium of a shell simulator under gravity and frictional contact constraints with a given external object. Unknowns are the natural shape of the shell (i.e., its shape without external forces) and the frictional contact forces at play, while the material properties (mass density, stiffness, friction coefficients) can be freely chosen by the user. Such an inverse problem formulates as an ill-posed nonlinear system subject to conical constraints. To select and compute a plausible solution, our inverse solver proceeds in two steps. In a first step, contacts are reduced to frictionless bilateral constraints and a natural shape is retrieved using the adjoint method. The second step uses this result as an initial guess and adjusts each bilateral force so that it projects onto the admissible Coulomb friction cone, while preserving global equilibrium. To better guide minimization towards the target, these two steps are applied iteratively using a degressive regularization of the shell energy.We validate our approach on simulated examples with reference material parameters, and show that our method still converges well for material parameters lying within a reasonable range around the reference, and even in the case of arbitrary meshes that are not issued from a simulation. We finally demonstrate practical inversion results on complex shell geometries freely modeled by an artist or automatically captured from real objects, such as posed garments or soft accessories.

References:


    1. V. Acary and B. Brogliato. 2008. Numerical methods for nonsmooth dynamical systems. Lecture Notes in Computational and Applied Mechanics, Vol. 35. Springer.Google Scholar
    2. U. Ascher and E. Boxerman. 2003. On the modified conjugate gradient method in cloth simulation. The Visual Computer 19, 7–8 (2003), 526–531. Google ScholarDigital Library
    3. D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Computer Graphics Proceedings (Proc. ACM SIGGRAPH’98). 43–54. Google ScholarDigital Library
    4. A. Bartle, A. Sheffer, V. Kim, D. Kaufman, N. Vining, and F. Berthouzoz. 2016. Physics-driven Pattern Adjustment for Direct 3D Garment Editing. ACM Transactions on Graphics 35, 4, Article 50 (July 2016), 11 pages. Google ScholarDigital Library
    5. J. Beck and K. Woodbury. 1998. Inverse problems and parameter estimation: integration of measurements and analysis. Measurement Science and Technology 9, 6 (1998), 839.Google ScholarCross Ref
    6. D. Bradley, T. Boubekeur, and W. Heidrich. 2008. Accurate multiview reconstruction using robust binocular stereo and surface meshing. In Computer Vision and Pattern Recognition (CVPR’08).Google Scholar
    7. R. Brouet, A. Sheffer, L. Boissieux, and M.-P. Cani. 2012. Design Preserving Garment Transfer. ACM Transactions on Graphics 31, 4 (2012), 36:1–36:11. Google ScholarDigital Library
    8. M. Carignan, Y. Yang, N. Magnenat-Thalmann, and D. Thalmann. 1992. Dressing Animated Synthetic Actors with Complex Deformable Clothes. SIGGRAPH Comput. Graph. 26, 2 (July 1992), 99–104. Google ScholarDigital Library
    9. R. Casati, G. Daviet, and F. Bertails-Descoubes. 2016. Inverse elastic cloth design with contact and friction. Research Report. Inria Grenoble, Université de Grenoble. https://hal.archives-ouvertes.fr/hal-01309617Google Scholar
    10. X. Chen, C. Zheng, W. Xu, and K. Zhou. 2014. An Asymptotic Numerical Method for Inverse Elastic Shape Design. ACM Transactions on Graphics 33, 4, Article 95 (July 2014), 11 pages. Google ScholarDigital Library
    11. G. Daviet, F. Bertails-Descoubes, and L. Boissieux. 2011. A hybrid iterative solver for robustly capturing Coulomb friction in hair dynamics. ACM Transactions on Graphics 30 (2011), 139:1–139:12. Issue 6. Google ScholarDigital Library
    12. G. Daviet, F. Bertails-Descoubes, and R. Casati. 2015. Fast Cloth Simulation with Implicit Contact and Exact Coulomb Friction. ACM SIGGRAPH / Eurographics Symposium on Computer Animation. (Aug. 2015). https://hal.inria.fr/hal-01180756 Poster. Google ScholarDigital Library
    13. A. Derouet-Jourdan, F. Bertails-Descoubes, G. Daviet, and J. Thollot. 2013. Inverse Dynamic Hair Modeling with Frictional Contact. ACM Transactions on Graphics 32, 6, Article 159 (Nov. 2013), 10 pages. Google ScholarDigital Library
    14. A. Derouet-Jourdan, F. Bertails-Descoubes, and J. Thollot. 2010. Stable Inverse Dynamic Curves. ACM Transactions on Graphics 29, Article 137 (December 2010), 10 pages. Issue 6. Google ScholarDigital Library
    15. M. Giles and N. Pierce. 2000. An Introduction to the Adjoint Approach to Design. Flow, Turbulence and Combustion 65, 3–4 (2000), 393–415.Google ScholarCross Ref
    16. E. Grinspun, A. Hirani, M. Desbrun, and P. Schröoder. 2003. Discrete Shells. In ACM SIGGRAPH – EG Symposium on Computer Animation (SCA’03). ACM-EG SCA, 62–67. Google ScholarDigital Library
    17. S. Hadap. 2006. Oriented strands – dynamics of stiff multi-body system. In ACM SIGGRAPH – EG Symp. on Comp. Anim. (SCA’06). ACM-EG SCA, 91–100. Google ScholarDigital Library
    18. T. Igarashi and J. Hughes. 2003. Clothing Manipulation. ACM Transactions on Graphics 22, 3 (July 2003), 697–697. Google ScholarDigital Library
    19. C. Li, H. Pan, Y. Liu, X. Tong, A. Sheffer, and W. Wang. 2017. BendSketch: Modeling Freeform Surfaces Through 2D Sketching. ACM Transactions on Graphics 36, 4, Article 125 (July 2017), 14 pages. Google ScholarDigital Library
    20. J. Li, G. Daviet, R. Narain, F. Bertails-Descoubes, M. Overby, G. Brown, and L. Boissieux. 2018a. An Implicit Frictional Contact Solver for Adaptive Cloth Simulation. ACM Transactions on Graphics 37, 4, Article 52 (Aug. 2018), 15 pages. Google ScholarDigital Library
    21. M. Li, A. Sheffer, E. Grinspun, and N. Vining. 2018b. FoldSketch: Enriching garments with physically reproducible folds. ACM Transactions on Graphics 37, 4, Article 133 (Aug. 2018), 13 pages. Google ScholarDigital Library
    22. Marvelous Designer. 2010. http://www.marvelousdesigner.com. (2010).Google Scholar
    23. J. Nocedal and S. Wright. 2006. Numerical Optimization. Springer.Google Scholar
    24. G. Pons-Moll, S. Pujades, S. Hu, and M. Black. 2017. ClothCap: Seamless 4D Clothing Capture and Retargeting. ACM Transactions on Graphics 36, 4, Article 73 (July 2017), 15 pages. Google ScholarDigital Library
    25. S. Porumbescu, B. Budge, L. Feng, and K. Joy. 2005. Shell Maps. ACM Transactions on Graphics 24, 3 (July 2005), 626–633. Google ScholarDigital Library
    26. M. Skouras, B. Thomaszewski, B. Bickel, and M. Gross. 2012. Computational Design of Rubber Balloons. Computer Graphics Forum (Proc. Eurographics) (2012). Google ScholarDigital Library
    27. M. Skouras, B. Thomaszewski, P. Kaufmann, A. Garg, B. Bickel, E. Grinspun, and M. Gross. 2014. Designing Inflatable Structures. ACM Transactions on Graphics 33, 4, Article 63 (July 2014), 10 pages. Google ScholarDigital Library
    28. E. Turquin, J. Wither, L. Boissieux, M.-P. Cani, and J. Hughes. 2007. A Sketch-Based Interface for Clothing Virtual Characters. IEEE Comput. Graph. Appl. 27, 1 (Jan. 2007), 72–81. Google ScholarDigital Library
    29. C. Twigg and Z. Kačić-Alesić. 2011. Optimization for sag-free simulations. In ACM SIGGRAPH – EG Symposium on Computer Animation (SCA’11). ACM-EG SCA, 225–236. Google ScholarDigital Library
    30. N. Umetani, D. Kaufman, T. Igarashi, and E. Grinspun. 2011. Sensitive Couture for Interactive Garment Editing and Modeling. ACM Transactions on Graphics 30, 4 (2011). http://www.cs.columbia.edu/cg/SC/ Google ScholarDigital Library
    31. P. Volino, F. Cordier, and N. Magnenat-Thalmann. 2005. From early virtual garment simulation to interactive fashion design. Computer-Aided Design Journal (CAD journal) 37 (March 2005), 593–608. Google ScholarDigital Library
    32. P. Volino and N. Magnenat-Thalmann. 2007. Stop-and-Go Cloth Draping. The Visual Computer (August 2007), 669–677. Google ScholarDigital Library
    33. B. Wang, L. Wu, K. Yin, U. Ascher, L. Liu, and H. Huang. 2015. Deformation Capture and Modeling of Soft Objects. ACM Transactions on Graphics 34, 4, Article 94 (July 2015), 12 pages. Google ScholarDigital Library
    34. H. Wang. 2018. Rule-free sewing pattern adjustement with precision and efficiency. ACM Transactions on Graphics 37, 4, Article 53 (Aug. 2018), 14 pages. Google ScholarDigital Library
    35. R. White, K. Crane, and D. Forsyth. 2007. Capturing and animating occluded cloth. ACM Transactions on Graphics 26, 3, Article 34 (July 2007). Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org