“Interactive wood combustion for botanical tree models” by Pirk, Jarząbek, Hädrich, Michels and Palubicki – ACM SIGGRAPH HISTORY ARCHIVES

“Interactive wood combustion for botanical tree models” by Pirk, Jarząbek, Hädrich, Michels and Palubicki

  • 2017 SA Technical Papers_Pirk_Interactive Wood Combustion for Botanical Tree Models

Conference:


Type(s):


Title:

    Interactive wood combustion for botanical tree models

Session/Category Title:   Fire, Flow and Flight


Presenter(s)/Author(s):



Abstract:


    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of a plant and the exothermic reaction of the combustion. Coupled with realistic physics for rods, the particles enable dynamic branch motions. We model material properties, such as moisture and charring behavior, and associate them with individual particles. The combustion is efficiently processed in the surface domain of the tree model on a polygonal mesh. A user can dynamically interact with the model by initiating fires and by inducing stress on branches. The flames realistically propagate through the tree model by consuming the available resources. Our method runs at interactive rates and supports multiple tree instances in parallel. We demonstrate the effectiveness of our approach through numerous examples and evaluate its plausibility against the combustion of real wood samples.

References:


    1. Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric Leroy, and Jean-Luc Lévêque. 2006. Super-helices for Predicting the Dynamics of Natural Hair. Proc. of ACM SIGGRAPH (2006), 1180–1187.
    2. Craig F. Bohren and David B. Thorud. 1973. Two theoretical models of radiation heat transfer between forest trees and snowpacks. Agric. For. Meteorol. 11 (1973), 3 — 16. Cross Ref
    3. Romain Casati and Florence Bertails-Descoubes. 2013. Super Space Clothoids. ACM Trans. Graph. 32, 4, Article 48 (2013), 12 pages.
    4. Norishige Chiba, Kazunobu Muraoka, Hiromichi Takahashi, and Mamoru Miura. 1994. Two-dimensional visual simulation of flames, smoke and the spread of fire. JVCA 5, 1 (1994), 37–53. Cross Ref
    5. A. Demirbaş. 2000. Mechanisms of liquefaction and pyrolysis reactions of biomass. ECM 41, 6 (2000), 633 — 646.
    6. Howard W. Emmons and Arvind Atreya. 1982. The science of wood combustion. Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences 5, 4 (1982), 259.
    7. L. Hernández Encinas, S. Hoya White, A. Martín del Rey, and G. Rodríguez Sánchez. 2007. Modelling forest fire spread using hexagonal cellular automata. Appl. Math. Model. 31, 6 (2007), 1213 — 1227. Cross Ref
    8. Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual Simulation of Smoke. Proc. of ACM SIGGRAPH (2001), 15–22.
    9. Kathinka Leikanger Friquin. 2011. Material properties and external factors influencing the charring rate of solid wood and glue-laminated timber. Fire and Materials 35, 5 (2011), 303–327. Cross Ref
    10. A. Galgano and C. Di Blasi. 2005. Infinite- versus finite-rate kinetics in simpliefied models of wood pyrolysis. Combustion Science and Technology 177 (2005), 279–303. Cross Ref
    11. Torsten Hädrich, Bedrich Benes, Oliver Deussen, and Sören Pirk. 2017. Interactive Modeling and Authoring of Climbing Plants. Eurographics (2017).
    12. Jeong-Mo Hong, Tamar Shinar, and Ronald Fedkiw. 2007. Wrinkled Flames and Cellular Patterns. ACM Trans. Graph. 26, 3, Article 47 (2007).
    13. Yi Hong, Dengming Zhu, Xianjie Qiu, and Zhaoqi Wang. 2010. Geometry-based Control of Fire Simulation. Vis. Comput. 26, 9 (2010), 1217–1228.
    14. Christopher Horvath and Willi Geiger. 2009. Directable, High-resolution Simulation of Fire on the GPU. ACM Trans. Graph. 28, 3, Article 41 (2009), 8 pages.
    15. Takashi Ijiri, Shigeru Owada, and Takeo Igarashi. 2006. Seamless Integration of Initial Sketching and Subsequent Detail Editing in Flower Modeling. Comp. Graph. Forum 25, 3 (2006), 617–624. Cross Ref
    16. T. Kugelstadt and E. Schömer. 2016. Position and Orientation Based Cosserat Rods. Proc. of ACM SIGGRAPH/Eurographics SCA (2016), 169–178. http://dl.acm.org/citation.cfm?id=2982818.2982842
    17. Michael J. Lawes, Anna Richards, Josefine Dathe, and Jeremy J. Midgley. 2011. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 212, 12 (2011), 2057–2069. Cross Ref
    18. Binh Huy Le and Zhigang Deng. 2012. Smooth Skinning Decomposition with Rigid Bones. ACM Trans. Graph. 31, 6, Article 199 (2012), 10 pages.
    19. Shiguang Liu, Tai An, Zheng Gong, and Ichiro Hagiwara. 2012. Physically Based Simulation of Solid Objects Burning. Springer Berlin Heidelberg, Berlin, Heidelberg, 110–120.
    20. Yotam Livny, Soeren Pirk, Zhanglin Cheng, Feilong Yan, Oliver Deussen, Daniel Cohen-Or, and Baoquan Chen. 2011. Texture-lobes for Tree Modelling. ACM Trans. Graph. 30, 4, Article 53 (2011), 10 pages.
    21. Yang Lizhong, Chen Xiaojun, Zhou Xiaodong, and Fan Weicheng. 2002. A modified model of pyrolysis for charring materials in fire. Int. J. Eng. Sci. 40, 9 (2002), 1011 — 1021. Cross Ref
    22. Steven Longay, Adam Runions, Frédéric Boudon, and Przemyslaw Prusinkiewicz. 2012. TreeSketch: interactive procedural modeling of trees on a tablet. In Proc. of the Intl. Symp. on SBIM. 107–120.
    23. Robert William MacCormack and American Institute of Aeronautics. 1969. The effect of viscosity in hypervelocity impact cratering. Technical Report AIAA-69-354. Astronautics. http://opac.inria.fr/record=b1070875
    24. A. D. Mcnaught and A. Wilkinson. 1997. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). WileyBlackwell.
    25. Z. Melek and J. Keyser. 2002. Interactive simulation of fire. Pacific Graphics (2002), 431–432.
    26. Zeki Melek and John Keyser. 2005. Multi-representation Interaction for Physically Based Modeling. Proc. of SPM (2005), 187–196.
    27. Dominik L. Michels, J. Paul T. Mueller, and Gerrit A. Sobottka. 2015. A Physically Based Approach to the Accurate Simulation of Stiff Fibers and Stiff Fiber Meshes. Comput. & Graph. 53B (2015), 136–146.
    28. Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position Based Dynamics. J. Vis. Comun. Image Represent. 18, 2 (2007), 109–118.
    29. Radomír Měch and Przemyslaw Prusinkiewicz. 1996. Visual models of plants interacting with their environment. In Proc. of SIGGRAPH. ACM, 397–410.
    30. Boris Neubert, Thomas Franken, and Oliver Deussen. 2007. Approximate Image-based Tree-modeling Using Particle Flows. ACM Trans. Graph. 26, 3, Article 88 (2007).
    31. Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen. 2002. Physically Based Modeling and Animation of Fire. ACM Trans. Graph. 21, 3 (2002), 721–728.
    32. Makoto Okabe, Shigeru Owada, and Takeo Igarashi. 2007. Interactive Design of Botanical Trees Using Freehand Sketches and Example-based Editing. In ACM SIGGRAPH Courses. ACM, Article 26.
    33. Peter E. Oppenheimer. 1986. Real time design and animation of fractal plants and trees. Proc. of SIGGRAPH 20, 4 (1986), 55–64.
    34. Dinesh K. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Comp. Graph. Forum 21, 3 (2002), 347–352. Cross Ref
    35. Wojciech Palubicki, Kipp Horel, Steven Longay, Adam Runions, Brendan Lane, Radomír Měch, and Przemyslaw Prusinkiewicz. 2009. Self-organizing Tree Models for Image Synthesis. ACM Trans. Graph. 28, 3, Article 58 (2009), 10 pages.
    36. W.J. Parker. 1989. Prediction Of The Heat Release Rate Of Douglas Fir. Fire Saf. Sci. 2 (1989), 337–346. Cross Ref
    37. Vincent Pegoraro and Steven G. Parker. 2006. Physically-based Realistic Fire Rendering. EG Nat. Phenom. (2006), 51–59.
    38. Sören Pirk, Till Niese, Oliver Deussen, and Boris Neubert. 2012. Capturing and animating the morphogenesis of polygonal tree models. ACM Trans. Graph. 31, 6, Article 169 (2012), 10 pages.
    39. Sören Pirk, Till Niese, Torsten Hädrich, Bedrich Benes, and Oliver Deussen. 2014. Windy Trees: Computing Stress Response for Developmental Tree Models. ACM Trans. Graph. 33, 6, Article 204 (2014), 11 pages.
    40. Sören Pirk, Ondrej Stava, Julian Kratt, Michel Abdul Massih Said, Boris Neubert, Radomír Měch, Bedrich Benes, and Oliver Deussen. 2012. Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. 31, 4, Article 50 (2012), 10 pages.
    41. P. Prusinkiewicz. 1986. Graphical applications of L-systems. In Proc. on Graph. Interf. 247–253.
    42. Rupert Seidl, Werner Rammer, Robert M. Scheller, and Thomas A. Spies. 2012. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecological Modelling 231 (2012), 87 — 100. Cross Ref
    43. Andrew Selle, Michael Lentine, and Ronald Fedkiw. 2008. A mass spring model for hair simulation. ACM Trans. Graph. 27, 3, Article 64 (2008), 11 pages.
    44. Jos Stam. 1999. Stable Fluids. Proc. of ACM SIGGRAPH (1999), 121–128.
    45. O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes. 2014. Inverse Procedural Modelling of Trees. Comp. Graph. Forum 33, 6 (2014), 118–131.
    46. Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran, and Andrew Selle. 2014. Augmented MPM for Phase-change and Varied Materials. ACM Trans. Graph. 33, 4, Article 138 (2014), 11 pages.
    47. V.D. Thi, M. Khelifa, M. El Ganaoui, and Y. Rogaume. 2016. Finite element modelling of the pyrolysis of wet wood subjected to fire. Fire Safety Journal 81 (2016), 85 — 96. Cross Ref
    48. Bohan Wang, Yili Zhao, and Jernej Barbič. 2017. Botanical Materials Based on Biomechanics. ACM Trans. on Graphics (SIGGRAPH 2017) 36, 4 (2017).
    49. W.G. Weng and W. C. Fan. 2007. A pyrolysis model of charring materials considering the effect of ambient oxygen concentration. Fire and Materials 31 (2007), 463–475. Cross Ref
    50. Yili Zhao and Jernej Barbič. 2013. Interactive Authoring of Simulation-ready Plants. ACM Trans. Graph. 32, 4, Article 84 (2013), 12 pages.
    51. Ye Zhao, Xiaoming Wei, Zhe Fan, A. Kaufman, and Hong Qin. 2003. Voxels on fire {computer animation}. In IEEE Visualization, 2003. VIS 2003. 271–278.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org