“Image-space control variates for rendering” by Rousselle, Jarosz and Novák – ACM SIGGRAPH HISTORY ARCHIVES

“Image-space control variates for rendering” by Rousselle, Jarosz and Novák

  • 2016 SA Technical Papers_Rousselle_Image-space Control Variates for Rendering

Conference:


Type(s):


Title:

    Image-space control variates for rendering

Session/Category Title:   Complex Rendering


Presenter(s)/Author(s):



Abstract:


    We explore the theory of integration with control variates in the context of rendering. Our goal is to optimally combine multiple estimators using their covariances. We focus on two applications, re-rendering and gradient-domain rendering, where we exploit coherence between temporally and spatially adjacent pixels. We propose an image-space (iterative) reconstruction scheme that employs control variates to reduce variance. We show that recent works on scene editing and gradient-domain rendering can be directly formulated as control-variate estimators, despite using seemingly different approaches. In particular, we demonstrate the conceptual equivalence of screened Poisson image reconstruction and our iterative reconstruction scheme. Our composite estimators offer practical and simple solutions that improve upon the current state of the art for the two investigated applications.

References:


    1. Barth, A., Schwab, C., and Zollinger, N. 2011. Multi-level monte carlo finite element method for elliptic pdes with stochastic coefficients. Numerische Mathematik 119, 1, 123–161.
    2. Bhat, P., Curless, B., Cohen, M., and Zitnick, C. L. 2008. Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems. Springer Berlin Heidelberg, Berlin, Heidelberg, 114–128.
    3. Bitterli, B., Rousselle, F., Moon, B., Iglesias-Guitián, J. A., Adler, D., Mitchell, K., Jarosz, W., and Novák, J. 2016. Nonlinearly weighted first-order regression for denoising monte carlo renderings. Computer Graphics Forum 35, 4, 107–117.
    4. Broadie, M., and Glasserman, P. 1998. Risk Management and Analysis, Volume 1: Measuring and Modelling Financial Risk. Wiley, New York, ch. Simulation for option pricing and risk management, 173–208.
    5. Buades, A., Coll, B., and Morel, J.-M. 2005. A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation 4, 2, 490–530. Cross Ref
    6. Clarberg, P., and Akenine-Möller, T. 2008. Exploiting visibility correlation in direct illumination. Computer Graphics Forum 27, 4, 1125–1136.
    7. Cochran, W. G. 1937. Problems arising in the analysis of a series of similar experiments. Supplement to the Journal of the Royal Statistical Society 4, 1, 102–118.
    8. Cohen, A., and Sackrowitz, H. B. 1974. On estimating the common mean of two normal distributions. The Annals of Statistics 2, 6, 1274–1282. Cross Ref
    9. Fan, S., Chenney, S., Hu, B., Tsui, K.-W., and Lai, Y.-C. 2006. Optimizing control variate estimators for rendering. Computer Graphics Forum (Proceedings of Eurographics) 25, 3, 351–358. Cross Ref
    10. Giles, M. B. 2008. Monte carlo and quasi-monte carlo methods 2006. Springer, Berlin, Heidelberg, ch. Improved Multilevel Monte Carlo Convergence using the Milstein Scheme, 343–358.
    11. Giles, M. B. 2013. Multilevel Monte Carlo methods. In Monte Carlo and Quasi-Monte Carlo Methods 2012, J. Dick, Y. F. Kuo, W. G. Peters, and H. I. Sloan, Eds. Springer, Berlin, Heidelberg, 83–103.
    12. Glasserman, P. 2004. Monte Carlo Methods in Financial Engineering. Applications of mathematics: stochastic modelling and applied probability. Springer.
    13. Glynn, P. W., and Szechtman, R. 2002. Monte Carlo and Quasi-Monte Carlo Methods 2000. Springer, Berlin, Heidelberg, ch. Some New Perspectives on the Method of Control Variates, 27–49.
    14. Graybill, F. A., and Deal, R. 1959. Combining unbiased estimators. Biometrics 15, 4, 543–550. Cross Ref
    15. Günther, T., and Grosch, T. 2015. Consistent scene editing by progressive difference images. Computer Graphics Forum 34, 4, 41–51.
    16. Halperin, M. 1961. Almost linearly-optimum combination of unbiased estimates. Journal of the American Statistical Association 56, 293, 36–43. Cross Ref
    17. Heinrich, S. 1998. Monte carlo complexity of global solution of integral equations. Journal of Complexity 14, 2, 151 — 175.
    18. Heinrich, S. 2000. Advances in Stochastic Simulation Methods. Birkhäuser Boston, Boston, MA, ch. The Multilevel Method of Dependent Tests, 47–61.
    19. Hesterberg, T. C., and Nelson, B. L. 1998. Control variates for probability and quantile estimation. Management Science 44, 9 (Sept.), 1295–1312.
    20. Kelemen, C., Szirmay-Kalos, L., Antal, G., and Csonka, F. 2002. A simple and robust mutation strategy for the Metropolis light transport algorithm. Computer Graphics Forum 21, 3, 531–540. Cross Ref
    21. Keller, T., and Olkin, I. 2004. Combining correlated unbiased estimators of the mean of a normal distribution. Lecture Notes-Monograph Series 45, 218–227. Cross Ref
    22. Keller, A. 2001. Hierarchical monte carlo image synthesis. Mathematics and Computers in Simulation 55, 1–3, 79 — 92. The Second {IMACS} Seminar on Monte Carlo Methods.
    23. Kemna, A., and Vorst, A. 1990. A pricing method for options based on average asset values. Journal of Banking & Finance 14, 1, 113–129. Cross Ref
    24. Kettunen, M., Manzi, M., Aittala, M., Lehtinen, J., Durand, F., and Zwicker, M. 2015. Gradient-domain path tracing. ACM Trans. Graph. 34, 4 (July), 123:1–123:13.
    25. Lafortune, E. P., and Willems, Y. D. 1994. The ambient term as a variance reducing technique for Monte Carlo ray tracing. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering), 163–171.
    26. Lafortune, E. P., and Willems, Y. D. 1995. A 5d tree to reduce the variance of Monte Carlo ray tracing. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering), 11–20.
    27. Lavenberg, S. S., Moeller, T. L., and Welch, P. D. 1982. Statistical results on control variables with application to queueing network simulation. Operations Research 30, 1, 182–202.
    28. Lehtinen, J., Karras, T., Laine, S., Aittala, M., Durand, F., and Aila, T. 2013. Gradient-domain Metropolis light transport. ACM Trans. Graph. 32, 4 (July), 95:1–95:12.
    29. Loh, W.-L. 1991. Estimating the common mean of two multivariate normal distributions. The Annals of Statistics 19, 1, 297–313. Cross Ref
    30. Loh, W. W. 1995. On the method of control variates. PhD thesis, Department of Operations Research, Stanford University. PhD thesis.
    31. Manzi, M., Rousselle, F., Kettunen, M., Lehtinen, J., and Zwicker, M. 2014. Improved sampling for gradientdomain Metropolis light transport. ACM Trans. Graph. 33, 6 (Nov.), 178:1–178:12.
    32. Manzi, M., Kettunen, M., Aittala, M., Lehtinen, J., Durand, F., and Zwicker, M. 2015. Gradient-domain bidirectional path tracing. In Eurographics Symposium on Rendering – Experimental Ideas & Implementations, The Eurographics Association.
    33. Manzi, M., Vicini, D., and Zwicker, M. 2016. Regularizing image reconstruction for gradient-domain rendering with feature patches. Computer Graphics Forum 35, 2, 263–273. Cross Ref
    34. Nelson, B. L. 1990. Control variate remedies. Operations Research 38, 6, 974–992.
    35. Norwood, T. E., and Hinkelmann, K. 1977. Estimating the common mean of several normal populations. The Annals of Statistics 5, 5 (09), 1047–1050. Cross Ref
    36. Novák, J., Selle, A., and Jarosz, W. 2014. Residual ratio tracking for estimating attenuation in participating media. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 33, 6 (Nov.).
    37. Pharr, M., and Humphreys, G. 2010. Physically Based Rendering: From Theory to Implementation, 2nd ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
    38. Rousselle, F., Knaus, C., and Zwicker, M. 2012. Adaptive rendering with non-local means filtering. ACM Trans. Graph. 31, 6 (Nov.), 195:1–195:11.
    39. Rousselle, F., Manzi, M., and Zwicker, M. 2013. Robust denoising using feature and color information. Computer Graphics Forum 32, 7, 121–130. Cross Ref
    40. Szécsi, L., Sbert, M., and Szirmay-Kalos, L. 2004. Combined correlated and importance sampling in direct light source computation and environment mapping. Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) 23, 585–594. Cross Ref
    41. Szirmay-Kalos, L., Tóth, B., and Magdics, M. 2011. Free path sampling in high resolution inhomogeneous participating media. Computer Graphics Forum 30, 1, 85–97. Cross Ref
    42. Zacks, S. 1966. Unbiased estimation of the common mean of two normal distributions based on small samples of equal size. Journal of the American Statistical Association 61, 314, 467–476. Cross Ref
    43. Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen, P., Soler, C., and Yoon, S.-E. 2015. Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. 667–681.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org