“Fast multiple-fluid simulation using Helmholtz free energy” by Yang, Chang, Ren, Lin, Zhang, et al. …
Conference:
Type(s):
Title:
- Fast multiple-fluid simulation using Helmholtz free energy
Session/Category Title: Partical Fluids
Presenter(s)/Author(s):
Abstract:
Multiple-fluid interaction is an interesting and common visual phenomenon we often observe. In this paper, we present an energy-based Lagrangian method that expands the capability of existing multiple-fluid methods to handle various phenomena, such as extraction, partial dissolution, etc. Based on our user-adjusted Helmholtz free energy functions, the simulated fluid evolves from high-energy states to low-energy states, allowing flexible capture of various mixing and unmixing processes. We also extend the original Cahn-Hilliard equation to be better able to simulate complex fluid-fluid interaction and rich visual phenomena such as motion-related mixing and position based pattern. Our approach is easily integrated with existing state-of-the-art smooth particle hydrodynamic (SPH) solvers and can be further implemented on top of the position based dynamics (PBD) method, improving the stability and incompressibility of the fluid during Lagrangian simulation under large time steps. Performance analysis shows that our method is at least 4 times faster than the state-of-the-art multiple-fluid method. Examples are provided to demonstrate the new capability and effectiveness of our approach.
References:
1. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., and Teschner, M. 2012. Versatile Rigid-Fluid Coupling for Incompressible SPH. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012) 31, 4, 62:1–62:8.
2. Badalassi, V. E., Ceniceros, H. D., and Banerjee, S. 2003. Computation of multiphase systems with phase field models. Journal of Computational Physics 190, 2, 371–397.
3. Bao, K., Wu, X., Zhang, H., and Wu, E. 2010. Volume fraction based miscible and immiscible fluid animation. Computer Animation and Virtual Worlds 21, 3-4 (May), 401–410.
4. Becker, M., and Teschner, M. 2007. Weakly compressible SPH for free surface flows. In Proceedings of SCA ’07, 209–217.
5. Bodin, K., Lacoursiére, C., and Servin, M. 2012. Constraint Fluids. IEEE Transactions on Visualization and Computer Graphics 18, 3 (Mar.), 516–526.
6. Boyd, L., and Bridson, R. 2012. MultiFLIP for Energetic Two-Phase Fluid Simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012) 31, 2 (Apr.), 16:1–16:12.
7. Boyer, F., and Lapuerta, C. 2006. Study of a three component Cahn-Hilliard flow model. ESAIM:M2AN 40, 4, 653–687.
8. Brackbill, J. U., and Ruppel, H. M. 1986. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. Journal of Computational Physics 65, 2, 314–343.
9. Cahn, J. W., and Hilliard, J. E. 1958. Free Energy of a Nonuniform System. I. Interfacial Free Energy. Journal of Chemical Physics 28, 2, 258–267.
10. Commins, S., and Rudman, M. 1999. An SPH Projection Method. Journal of Computational Physics 152, 2, 584–607.
11. Cornelis, J., Ihmsen, M., Peer, A., and Teschner, M. 2014. IISPH-FLIP for incompressible fluids. Computer Graphics Forum (Proceedings of Eurographics 2014) 33, 2, 255–262.
12. Da, F., Batty, C., and Grinspun, E. 2014. Multimaterial Mesh-Based Surface Tracking. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4, 112:1–112:11.
13. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual Simulation of Smoke. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2001), 15–22.
14. Garcke, H., Nestler, B., and Stoth, B. 1998. On Anisotropic Order Parameter Models for Multi-Phase Systems and Their Sharp Interface Limits. Physica D: Nonlinear Phenomena 115, 1-2, 87–108.
15. He, X., Liu, N., Wang, H., and Wang, G. 2012. Local Poisson SPH For Viscous Incompressible Fluids. Computer Graphics Forum 31, 6, 1948–1958.
16. Hirschler, M., Huber, M., Säckel, W., Kunz, P., and Nieken, U. 2014. An Application of the Cahn-Hilliard Approach to Smoothed Particle Hydrodynamics. Mathematical Problems in Engineering 2014(694894):10.
17. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous Fluids. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2005) 24, 3 (July), 915–920.
18. Hong, J.-M., Lee, H.-Y., Yoon, J.-C., and Kim, C.-H. 2008. Bubbles Alive. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2008) 27, 3 (Aug.), 48:1–48:4.
19. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., and Teschner, M. 2013. Implict Incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 03 (July), 426–435.
20. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. 2014. SPH Fluids in Computer Graphics. In Eurographics 2014 – State of the Art Reports, The Eurographics Association, 21–42.
21. Jacqmin, D. 1999. Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling. Journal of Computational Physics 155, 1, 96–127.
22. Jacqmin, D. 2000. Contact-line dynamics of a diffuse fluid interface. Journal of Fluid Mechanics 402, 01, 57–88.
23. Kang, N., Park, J., Noh, J., and Shin, S. Y. 2010. A Hybrid Approach to Multiple Fluid Simulation using Volume Fractions. Computer Graphics Forum 29, 2, 685–694.
24. Kim, J. 2005. A continuous surface tension force formulation for diffuse-interface model. Journal of Computational Physics 204, 2, 784–804.
25. Kim, J. 2007. A numerical method for the Cahn-Hilliard equation with a variable mobility. Communications in Nonlinear Science and Numerical Simulation 12, 8, 1560–1571.
26. Kim, J. 2009. A generalized continuous surface tension force formulation for phase-field models for immiscible multi-component fluid flows. Computer Methods in Applied Mechanics and Engineering 198, 37–40, 3105–3112.
27. Kim, B. 2010. Multi-Phase Fluid Simulations Using Regional Level Sets. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2010) 29, 6 (Dec.), 175:1–175:8.
28. Kim, J. 2012. Phase-Field Models for Multi-Component Fluid Flows. Communications in Computational Physics 12, 3, 613–661.
29. Lentine, M., Aanjaneya, M., and Fedkiw, R. 2011. Mass and Momentum Conservation for Fluid Simulation. In Proceedings of SCA ’11, 91–100.
30. Liu, S., Liu, Q., and Peng, Q. 2011. Realistic simulation of mixing fluids. The Visual Computer 27, 3 (Mar.), 241–248.
31. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple Interacting Liquids. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2006) 25, 3 (July), 812–819.
32. Macklin, M., and Müller, M. 2013. Position Based Fluids. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2013) 32, 4 (July), 104:1–104:12.
33. Macklin, M., Müller, M., Chentanez, N., and Kim, T.- Y. 2014. Unified Particle Physics for Real-Time Applications. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4, 153:1–153:12.
34. Maples, R. E. 2000. Petroleum Refinery Process Economics. PennWell Books.
35. Misztal, M., Erleben, K., Bargteil, A., Fursund, J., Christensen, B., Barentzen, J., and Bridson, R. 2012. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes. In Proceedings of SCA ’12, 97–106.
36. Monaghan, J. J. 1989. On the problem of penetration in particle methods. Journal of Computational Physics 82, 1, 1–15.
37. Monaghan. 1992. Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics 30, 1, 543–574.
38. Monaghan. 1994. Simulating Free Surface Flows with SPH. Journal of Computational Physics 110, 2 (Feb.), 399–406.
39. Monaghan. 2000. SPH without a Tensile Instability. Journal of Computational Physics 159, 2 (Apr.), 290–311.
40. Morris, J., Fox, P., and Zhu, Y. 1997. Modeling Low Reynolds Number Incompressible Flows Using SPH. Journal of Computational Physics 136, 1, 214–226.
41. Müller, M., Charypar, D., and Gross, M. 2003. Particle-Based Fluid Simulation for Interactive Application. In Proceedings of SCA ’03, 154–159.
42. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-Based Fluid-Fluid Interaction. In Proceedings of SCA ’05, 237–244.
43. Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2007. Position Based Dynamics. Journal of Visual Communication and Image Representation 18, 2 (Apr.), 109–118.
44. Nielsen, M. B., and Østerby, O. 2013. A Two-Continua Approach to Eulerian Simulation of Water Spray. ACM Transaction on Graphics (Proceedings of SIGGRAPH 2013) 32, 4 (July), 67:1–67:10.
45. Park, J., Kim, Y., Wi, D., Kang, N., Shin, S. Y., and Noh, J. 2008. A Unified Handling of Immiscible and Miscible Fluids. Computer Animation and Virtual Worlds 19, 3–4 (September), 455–467.
46. Premože, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. T. 2003. Particle-Based Simulation of Fluids. Computer Graphics Forum 22, 3, 401–410.
47. Raveendran, K., Wojtan, C., and Turk, G. 2011. Hybrid Smoothed Particle Hydrodynamics. In Proceedings of SCA ’11, 33–42.
48. Ren, B., Li, C., Yan, X., Lin, M. C., Bonet, J., and Hu, S.-M. 2014. Multiple-fluid SPH Simulation Using a Mixture Model. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2014) 33, 5 (Aug.), 171:1–171:11.
49. Schechter, H., and Bridson, R. 2012. Ghost SPH for Animating Water. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012) 31, 4, 61:1–61:8.
50. Shao, S., and Lo, Y. 2003. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in water resources 26, 7, 787–800.
51. Solenthaler, B., and Pajarola, R. 2008. Density contrast SPH Interfaces. In Proceedings of SCA ’08, 211–218.
52. Solenthaler, B., and Pajarola, R. 2009. Predictiv-ecorrective incompressible SPH. ACM Transactions on Graphics (Proceeding of SIGGRAPH 2009) 28, 3, 40:1–40:6.
53. Zhu, Y., and Bridson, R. 2005. Animating Sand as a Fluid. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2005) 24, 3, 965–972.


