“Efficient Visibility Reuse for Real-time ReSTIR” by Tokuyoshi
Conference:
Type(s):
Title:
- Efficient Visibility Reuse for Real-time ReSTIR
Session/Category Title: Stop the Presses!
Presenter(s)/Author(s):
Abstract:
Spatiotemporal reservoir resampling (ReSTIR) is a powerful importance sampling technique, but it can still produce significant noise on shadow edges and contact shadows. To reduce the shadow noise, we introduce a simple and efficient visibility estimation that reuses the visibilities of spatiotemporal neighbor samples.
References:
[1]
Philippe Bekaert, Mateu Sbert, and Yves D. Willems. 2000. Weighted Importance Sampling Techniques for Monte Carlo Radiosity. In EGWR ’00. 35–46.
[2]
Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech Jarosz. 2020. Spatiotemporal Reservoir Resampling for Real-Time Ray Tracing with Dynamic Direct Lighting. ACM Trans. Graph. 39, 4, Article 148 (2020), 17 pages. https://doi.org/10.1145/3386569.3392481
[3]
Daqi Lin, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuksel, and Chris Wyman. 2022. Generalized Resampled Importance Sampling: Foundations of ReSTIR. ACM Trans. Graph. 41, 4, Article 75 (2022), 23 pages. https://doi.org/10.1145/3528223.3530158
[4]
Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering. In SIGGRAPH ’95. 419–428. https://doi.org/10.1145/218380.218498
[5]
Chris Wyman and Alexey Panteleev. 2021. Rearchitecting Spatiotemporal Resampling for Production. In HPG ’21. 19 pages. https://doi.org/10.2312/hpg.20211281