“Detail-preserving fully-Eulerian interface tracking framework” – ACM SIGGRAPH HISTORY ARCHIVES

“Detail-preserving fully-Eulerian interface tracking framework”

  • ©

Conference:


Type(s):


Title:

    Detail-preserving fully-Eulerian interface tracking framework

Session/Category Title:   Fluids and flows


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    This paper introduces a fully-Eulerian interface tracking framework that preserves the fine details of liquids. Unlike existing Eulerian methods, the proposed framework shows good mass conservation even though it does not employ conventional Lagrangian elements. In addition, it handles complex merging and splitting of interfaces robustly due to the implicit representation. To model the interface more accurately, a high order polynomial reconstruction of the signed distance function is utilized based on a number of sub-grid quadrature points. By combining this accurate polynomial representation with a high-order re-initialization method, the proposed framework preserves the detailed structures of the interface. Moreover, the method is simple to implement, unconditionally stable, and is suitable for parallel computing environments.

References:


    1. Bargteil, A. W., Goktekin, T. G., O’brien, J. F., and Strain, J. A. 2006. A semi-lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1, 19–38. Google ScholarDigital Library
    2. Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472–2493. Google ScholarDigital Library
    3. Cecil, T. C., Osher, S. J., and Qian, J. 2008. Essentially non-oscillatory adaptive tree methods. J. Sci. Comput. 35, 1, 25–41. Google ScholarDigital Library
    4. Chentanez, N., Feldman, B. E., Labelle, F., O’Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, 219–228. Google ScholarDigital Library
    5. Chi-Shu, W. 1997. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Tech. rep. Google ScholarDigital Library
    6. Desjardins, O., and Pitsch, H. 2009. A spectrally refined interface approach for simulating multiphase flows. J. Comput. Phys. 228, 5, 1658–1677. Google ScholarDigital Library
    7. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comp. Phys. 183, 83–116. Google ScholarDigital Library
    8. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3, 736–744. Google ScholarDigital Library
    9. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In In Proc. 4th ASME-JSME Joint Fluids Eng. Conf., number FEDSM2003-45144. ASME, 1–6.Google Scholar
    10. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. Computer Graphics (Proc. ACM SIGGRAPH 2001) 35, 15–22. Google ScholarDigital Library
    11. Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., and Zaleski, S. 1999. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152, 2, 423–456. Google ScholarDigital Library
    12. Houston, B., Nielsen, M. B., Batty, C., Nilsson, O., and Museth, K. 2006. Hierarchical rle level set: A compact and versatile deformable surface representation. ACM Trans. Graph. 25, 1, 151–175. Google ScholarDigital Library
    13. Kim, D., Song, O.-Y., and Ko, H.-S. 2008. A semi-lagrangian cip fluid solver without dimensional splitting. Computer Graphics Forum 27, 2, 467–475.Google ScholarCross Ref
    14. Kim, D., Song, O.-Y., and Ko, H.-S. 2009. Stretching and wiggling liquids. ACM Trans. Graph. 28, 5, 1–7. Google ScholarDigital Library
    15. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23, 3, 457–462. Google ScholarDigital Library
    16. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812–819. Google ScholarDigital Library
    17. Marchandise, E., and Remacle, J.-F. 2006. A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows. J. Comput. Phys. 219, 2, 780–800. Google ScholarDigital Library
    18. Mihalef, V., Metaxas, D., and Sussman, M. 2007. Textured liquids based on the marker level set. Comput. Graph. Forum 26, 3, 457–466.Google ScholarCross Ref
    19. Müller, M. 2009. Fast and robust tracking of fluid surfaces. In SCA ’09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, 237–245. Google ScholarDigital Library
    20. Osher, S., and Fedkiw, R. 2002. The Level Set Method and Dynamic Implicit Surfaces. Springer-Verlag, New York.Google Scholar
    21. Osher, S., and Sethian, J. A. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on hamiltonjacobi formulations. J. Comp. Phys. 79, 12–49. Google ScholarDigital Library
    22. Peng, D., Merriman, B., Osher, S., Zhao, H., and Kang, M. 1999. A pde-based fast local level set method. J. Comput. Phys. 155, 2, 410–438. Google ScholarDigital Library
    23. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 2007. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA. Google ScholarDigital Library
    24. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 193–202. Google ScholarDigital Library
    25. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T., and Hanrahan, P. 2008. Larrabee: a many-core x86 architecture for visual computing. ACM Trans. Graph. 27, 3, 1–15. Google ScholarDigital Library
    26. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable maccormack method. J. Sci. Comput. 35, 2–3, 350–371. Google ScholarDigital Library
    27. Sethian, J. A. 1995. A fast marching level set method for monotonically advancing fronts. In Proc. Nat. Acad. Sci, 1591–1595.Google Scholar
    28. Sethian, J. 1999. Level Set Methods and Fast Marching Methods. Cambridge University Press.Google Scholar
    29. Song, O.-Y., Shin, H., and Ko, H.-S. 2005. Stable but non-dissipative water. ACM Trans. Graph. 24, 1, 81–97. Google ScholarDigital Library
    30. Stam, J. 1999. Stable fluids. Computer Graphics (Proc. ACM SIGGRAPH ’99) 33, Annual Conference Series, 121–128. Google ScholarDigital Library
    31. Sussman, M., and Hussaini, M. Y. 2003. A discontinuous spectral element method for the level set equation. J. Sci. Comput. 19, 1–3, 479–500. Google ScholarDigital Library
    32. Wang, R., Feng, H., and Spiteri, R. J. 2008. Observations on the fifth-order weno method with non-uniform meshes. Applied Mathematics and Computation 196, 433–447.Google ScholarCross Ref
    33. Wang, Z., Yang, J., and Stern, F. 2009. An improved particle correction procedure for the particle level set method. J. Comp. Phys. 228, 16, 5819–5837. Google ScholarDigital Library
    34. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Trans. Graph. 28, 3, 1–10. Google ScholarDigital Library
    35. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Trans. Graph. 29, 4, 1–8. Google ScholarDigital Library
    36. Wolf, W. R, A. J. L. F. 2007. High-order eno and weno schemes for unstructured grids. Int. J. Numer. Meth. Fluids. 55, 10, 917–943.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org