“Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization” – ACM SIGGRAPH HISTORY ARCHIVES

“Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization”

  • 2010 SA Technical Paper: Lanman_Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization

Conference:


Type(s):


Title:

    Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization

Session/Category Title:   Imaging hardware


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We optimize automultiscopic displays built by stacking a pair of modified LCD panels. To date, such dual-stacked LCDs have used heuristic parallax barriers for view-dependent imagery: the front LCD shows a fixed array of slits or pinholes, independent of the multi-view content. While prior works adapt the spacing between slits or pinholes, depending on viewer position, we show both layers can also be adapted to the multi-view content, increasing brightness and refresh rate. Unlike conventional barriers, both masks are allowed to exhibit non-binary opacities. It is shown that any 4D light field emitted by a dual-stacked LCD is the tensor product of two 2D masks. Thus, any pair of 1D masks only achieves a rank-1 approximation of a 2D light field. Temporal multiplexing of masks is shown to achieve higher-rank approximations. Non-negative matrix factorization (NMF) minimizes the weighted Euclidean distance between a target light field and that emitted by the display. Simulations and experiments characterize the resulting content-adaptive parallax barriers for low-rank light field approximation.

References:


    1. Bell, G. P., Craig, R., Paxton, R., Wong, G., and Galbraith, D. 2008. Beyond flat panels: Multi-layered displays with real depth. SID DIGEST 39, 1, 352–355.Google ScholarCross Ref
    2. Blondel, V. D., Ho, N.-D., and van Dooren, P. 2008. Weighted nonnegative matrix factorization and face feature extraction. Image and Vision Computing.Google Scholar
    3. Brady, D. J., Pitsianis, N. P., and Sun, X. 2004. Reference structure tomography. J. Opt. Soc. Am. A 21, 7, 1140–1147.Google ScholarCross Ref
    4. Cabral, B., and Leedom, L. C. 1993. Imaging vector fields using line integral convolution. In ACM SIGGRAPH, 263–270. Google ScholarDigital Library
    5. Chai, J.-X., Tong, X., Chan, S.-C., and Shum, H.-Y. 2000. Plenoptic sampling. In ACM SIGGRAPH, 307–318. Google ScholarDigital Library
    6. Chu, M., Diele, F., Plemmons, R., and Ragni, S. 2004. Optimality, computation, and interpretation of nonnegative matrix factorizations. SIAM Journal on Matrix Analysis.Google Scholar
    7. Dodgson, N. A. 2009. Analysis of the viewing zone of multiview autostereoscopic displays. In SPIE Stereoscopic Displays and Applications XIII, 254–265.Google Scholar
    8. Garg, G., Talvala, E.-V., Levoy, M., and Lensch, H. P. A. 2006. Symmetric photography: Exploiting data-sparseness in reflectance fields. In EGSR, 251–262. Google ScholarDigital Library
    9. Hersch, R. D., and Chosson, S. 2004. Band moiré images. ACM Trans. Graph. 23, 3, 239–247. Google ScholarDigital Library
    10. Hirsch, M., Lanman, D., Holtzman, H., and Raskar, R. 2009. BiDi screen: A thin, depth-sensing LCD for 3D interaction using lights fields. ACM Trans. Graph. 28, 5. Google ScholarDigital Library
    11. Hoshino, H., Okano, F., Isono, H., and Yuyama, I. 1998. Analysis of resolution limitation of integral photography. J. Opt. Soc. Am. A 15, 8, 2059–2065.Google ScholarCross Ref
    12. Isono, H., Yasuda, M., and Sasazawa, H. 1993. Autostereoscopic 3-D display using LCD-generated parallax barrier. Electronics and Communications in Japan 76, 7, 77–84.Google Scholar
    13. Ives, F. E., 1903. Parallax stereogram and process of making same. United States Patent 725,567.Google Scholar
    14. Jacobs, A., Mather, J., Winlow, R., Montgomery, D., Jones, G., Willis, M., Tillin, M., Hill, L., Khazova, M., Stevenson, H., and Bourhill, G. 2003. 2D/3D switchable displays. Sharp Technical Journal, 4, 15–18.Google Scholar
    15. Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360° light field display. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
    16. Kim, Y., Kim, J., Kang, J.-M., Jung, J.-H., Choi, H., and Lee, B. 2007. Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array. Optics Express 15, 26, 18253–18267.Google ScholarCross Ref
    17. Konrad, J., and Halle, M. 2007. 3-D displays and signal processing. IEEE Signal Processing Magazine 24, 6, 97–111.Google ScholarCross Ref
    18. Lanman, D., Raskar, R., Agrawal, A., and Taubin, G. 2008. Shield fields: Modeling and capturing 3D occluders. ACM Trans. Graph. 27, 5. Google ScholarDigital Library
    19. Lee, D. D., and Seung, H. S. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791.Google ScholarCross Ref
    20. Levin, A., Hasinoff, S. W., Green, P., Durand, F., and Freeman, W. T. 2009. 4D frequency analysis of computational cameras for depth of field extension. In ACM SIGGRAPH, 1–14. Google ScholarDigital Library
    21. Levoy, M., and Hanrahan, P. 1996. Light field rendering. In ACM SIGGRAPH, 31–42. Google ScholarDigital Library
    22. Levoy, M., Zhang, Z., and McDowall, I. 2009. Recording and controlling the 4D light field in a microscope using microlens arrays. Journal of Microscopy 235, 2, 144–162.Google ScholarCross Ref
    23. Lippmann, G. 1908. Epreuves reversible donnant la sensation du relief. Journal of Physics 7, 4, 821–825.Google Scholar
    24. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., and Hanrahan, P. 2005. Light field photography with a hand-held plenoptic camera. Tech. rep., Stanford University.Google Scholar
    25. Ozaktas, H. M., Yüksel, S., and Kutay, M. A. 2002. Linear algebraic theory of partial coherence: Discrete fields and measures of partial coherence. J. Opt. Soc. Am. A 19, 8, 1563–1571.Google ScholarCross Ref
    26. Perlin, K., Paxia, S., and Kollin, J. S. 2000. An autostereoscopic display. In ACM SIGGRAPH, 319–326. Google ScholarDigital Library
    27. Persistence of Vision Pty. Ltd., 2004. Persistence of vision raytracer (version 3.6). http://www.povray.org.Google Scholar
    28. Peterka, T., Kooima, R. L., Sandin, D. J., Johnson, A., Leigh, J., and DeFanti, T. A. 2008. Advances in the dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system. IEEE TVCG 14, 3, 487–499. Google ScholarDigital Library
    29. Slinger, C., Cameron, C., and Stanley, M. 2005. Computer-generated holography as a generic display technology. IEEE Computer 38, 8, 46–53. Google ScholarDigital Library
    30. Srebro, N., and Jaakkola, T. 2003. Weighted low-rank approximations. In ICML, 720–727.Google Scholar
    31. Stanford Computer Graphics Laboratory, 2008. The Stanford light field archive. http://lightfield.stanford.edu.Google Scholar
    32. Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., and Tumblin, J. 2007. Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Trans. Graph. 26, 3, 69. Google ScholarDigital Library
    33. Woodgate, G. J., and Harrold, J. 2003. High efficiency reconfigurable 2D/3D autostereoscopic display. In SID DIGEST.Google Scholar
    34. Woods, A. J., and Sehic, A. 2009. The compatibility of LCD TVs with time-sequential stereoscopic 3D visualization. In SPIE Stereoscopic Displays and Applications XX.Google Scholar
    35. Zhang, T., Fang, B., Liu, W., Tang, Y. Y., He, G., and Wen, J. 2008. Total variation norm-based nonnegative matrix factorization for identifying discriminant representation of image patterns. Neurocomputing 71, 10–12, 1824–1831. Google ScholarDigital Library
    36. Zwicker, M., Vetro, A., Yea, S., Matusik, W., Pfister, H., and Durand, F. 2007. Resampling, antialiasing, and compression in multiview 3-D displays. IEEE Signal Processing Magazine 24, 6, 88–96.Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org