“Cone carving for surface reconstruction” – ACM SIGGRAPH HISTORY ARCHIVES

“Cone carving for surface reconstruction”

  • 2010 SA Technical Paper: Shalom_Cone carving for surface reconstruction

Conference:


Type(s):


Title:

    Cone carving for surface reconstruction

Session/Category Title:   Reconstructing and editing geometry


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present cone carving, a novel space carving technique supporting topologically correct surface reconstruction from an incomplete scanned point cloud. The technique utilizes the point samples not only for local surface position estimation but also to obtain global visibility information under the assumption that each acquired point is visible from a point lying outside the shape. This enables associating each point with a generalized cone, called the visibility cone, that carves a portion of the outside ambient space of the shape from the inside out. These cones collectively provide a means to better approximate the signed distances to the shape specifically near regions containing large holes in the scan, allowing one to infer the correct surface topology. Combining the new distance measure with conventional RBF, we define an implicit function whose zero level set defines the surface of the shape. We demonstrate the utility of cone carving in coping with significant missing data and raw scans from a commercial 3D scanner as well as synthetic input.

References:


    1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. 2003. Computing and rendering point set surfaces. IEEE Trans. Vis. & Comp. Graphics 9, 1, 3–15. Google ScholarDigital Library
    2. Amenta, N., and Bern, M. W. 1998. Surface reconstruction by Voronoi filtering. In Proc. of Symp. on Comp. Geom., 39–48. Google ScholarDigital Library
    3. Amenta, N., Choi, S., and Kolluri, R. 2001. The power crust, unions of balls, and the medial axis transform. Computational Geometry: Theory and Applications 19, 2–3, 127–153. Google ScholarDigital Library
    4. Aranz. 2009. FastSCAN, Cobra and Scorpion, Handheld Laser Scanner User Manual. Aranz Scanning Ltd, http://www.fastscan3d.com/.Google Scholar
    5. Baerentzen, J. A., and Aanaes, H. 2005. Signed distance computation using the angle weighted pseudonormal. IEEE Transactions on Visualization and Computer Graphics 11, 3, 243–253. Google ScholarDigital Library
    6. Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., and Evans, T. R. 2001. Reconstruction and representation of 3D objects with radial basis functions. In Proc. of ACM SIGGRAPH, 67–76. Google ScholarDigital Library
    7. Cazals, F., and Giesen, J. 2006. Delaunay triangulation based surface reconstruction. In Effective Computational Geometry for Curves and Surfaces, J.-D. Boissonnat and M. Teillaud, Eds. Springer, 231–276.Google Scholar
    8. Cohen, M. F., and Greenberg, D. P. 1985. The hemi-cube: a radiosity solution for complex environments. In Proc. of ACM SIGGRAPH, 31–40. Google ScholarDigital Library
    9. Curless, B., and Levoy, M. 1996. A volumetric method for building complex models from range images. In Proc. of ACM SIGGRAPH, 303–312. Google ScholarDigital Library
    10. Davis, J., Marschner, S. R., Garr, M., and Levoy, M. 2002. Filling holes in complex surfaces using volumetric diffusion. In Proceedings of the first International Symposium on 3D Data Processing Visualization and Transmission, 354–369.Google Scholar
    11. Dey, T., and Goswami, S. 2003. Tight cocone: A water tight surface reconstructor. In Proc. of ACM Sympos. on Solid Modeling & Appl., 127–134. Google ScholarDigital Library
    12. Dey, T. K., Li, K., Ramos, E. A., and Wenger, R. 2009. Isotopic reconstruction of surfaces with boundaries. Computer Graphics Forum, special issue SGP ’09: Proceedings of the Symposium on Geometry Processing 28, 5, 1371–1382. Google ScholarDigital Library
    13. Edelsbrunner, H., and Mücke, E. P. 1994. Three-dimensional alpha shapes. ACM Trans. on Graphics 13, 1, 43–72. Google ScholarDigital Library
    14. El-Sana, J., and Varshney, A. 1998. Topology simplification for polygonal virtual environments. IEEE Trans. Vis. & Comp. Graphics 4, 2, 133–144. Google ScholarDigital Library
    15. Everitt, B. S., Landau, S., and Leese, M. 2001. Cluster Analysis. Oxford University Press. Google ScholarDigital Library
    16. Gal, R., Shamir, A., Hassner, T., Pauly, M., and Cohen-Or, D. 2007. Surface reconstruction using local shape priors. In Proc. Eurographics Symp. on Geometry Processing, 253–262. Google ScholarDigital Library
    17. Giesen, J., Cazals, F., Pauly, M., and Zomorodian, A. 2006. The conformal alpha shape filtration. The Visual Computer 22, 8, 531–540.Google ScholarCross Ref
    18. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1992. Surface reconstruction from unorganized points. In Proc. of ACM SIGGRAPH, 71–78. Google ScholarDigital Library
    19. Huang, H., Li, D., Zhang, H., Ascher, U., and Cohen-Or, D. 2009. Consolidation of unorganized point clouds for surface reconstruction. ACM Trans. on Graphics (Proc. of SIGGRAPH Asia) 28, 5, Article 176. Google ScholarDigital Library
    20. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Proc. Eurographics Symp. on Geometry Processing, 61–70. Google ScholarDigital Library
    21. Kutulakos, K. N., and Seitz, S. M. 2000. A theory of shape by space carving. Proc. Int. J. Comp. Vis. 38, 3, 199–218. Marr Prize Special Issue. Google ScholarDigital Library
    22. Laurentini, A. 1994. The visual hull concept for silhouette-based image understanding. IEEE Trans. Pat. Ana. & Mach. Int. 16, 2, 150–162. Google ScholarDigital Library
    23. Montenegro, A. A., Carvalho, P. C. P., Gattass, M., and Velho, L. C. P. R. 2004. Adaptive space carving. In Proc. of 3D Data Processing, Visualization, and Transmission, 199–206. Google ScholarDigital Library
    24. Nehab, D., Rusinkiewicz, S., Davis, J., and Ramamoorthi, R. 2005. Efficiently combining positions and normals for precise 3D geometry. ACM Trans. on Graphics 24, 3, 536–543. Google ScholarDigital Library
    25. Nitschke, C., Nakazawa, A., and Takemura, H. 2007. Real-time space carving using graphics hardware. IEICE Trans. Inf. Syst. E90-D, 8, 1175–1184. Google ScholarDigital Library
    26. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H.-P. 2003. Multi-level partition of unity implicits. ACM Trans. on Graphics 22, 3, 463–470. Google ScholarDigital Library
    27. Pauly, M., Mitra, N. J., Giesen, J., Gross, M., and Guibas, L. J. 2005. Example-based 3D scan completion. In Proc. Eurographics Symp. on Geometry Processing, 23–32. Google ScholarDigital Library
    28. Pfister, H., Zwicker, M., van Baar, J., and Gross, M. 2000. Surfels: surface elements as rendering primitives. In Proc. of ACM SIGGRAPH, 335–342. Google ScholarDigital Library
    29. Schnabel, R., Degener, P., and Klein, R. 2009. Completion and reconstruction with primitive shapes. Computer Graphics Forum (Proc. of Eurographics) 28, 2, 503–512.Google ScholarCross Ref
    30. Sharf, A., Alexa, M., and Cohen-Or, D. 2004. Context-based surface completion. ACM Trans. on Graphics 23, 3, 878–887. Google ScholarDigital Library
    31. Sorkine, O., and Cohen-Or, D. 2004. Least-squares meshes. In Proc. IEEE Conf. on Shape Modeling and Applications, 191–199. Google ScholarDigital Library
    32. Tagliasacchi, A., Zhang, H., and Cohen-Or, D. 2009. Curve skeleton extraction from incomplete point cloud. ACM Trans. on Graphics 28, 3, Article 71, 9 pages. Google ScholarDigital Library
    33. Turk, G., and Levoy, M. 1994. Zippered polygon meshes from range images. In Proc. of ACM SIGGRAPH, 311–318. Google ScholarDigital Library
    34. Westover, L. 1990. Footprint evaluation for volume rendering. In Proc. of ACM SIGGRAPH, 367–376. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org