“ComplementMe: weakly-supervised component suggestions for 3D modeling” by Sung, Su, Kim, Chaudhuri and Guibas
Conference:
Type(s):
Title:
- ComplementMe: weakly-supervised component suggestions for 3D modeling
Session/Category Title: Learning Geometry
Presenter(s)/Author(s):
Abstract:
Assembly-based tools provide a powerful modeling paradigm for non-expert shape designers. However, choosing a component from a large shape repository and aligning it to a partial assembly can become a daunting task. In this paper we describe novel neural network architectures for suggesting complementary components and their placement for an incomplete 3D part assembly. Unlike most existing techniques, our networks are trained on unlabeled data obtained from public online repositories, and do not rely on consistent part segmentations or labels. Absence of labels poses a challenge in indexing the database of parts for the retrieval. We address it by jointly training embedding and retrieval networks, where the first indexes parts by mapping them to a low-dimensional feature space, and the second maps partial assemblies to appropriate complements. The combinatorial nature of part arrangements poses another challenge, since the retrieval network is not a function: several complements can be appropriate for the same input. Thus, instead of predicting a single output, we train our network to predict a probability distribution over the space of part embeddings. This allows our method to deal with ambiguities and naturally enables a UI that seamlessly integrates user preferences into the design process. We demonstrate that our method can be used to design complex shapes with minimal or no user input. To evaluate our approach we develop a novel benchmark for component suggestion systems demonstrating significant improvement over state-of-the-art techniques.
References:
1. Christopher M. Bishop. 1994. Mixture density networks. Technical Report. Neural Computing Research Group, Aston University.
2. Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio Savarese, Manolis Sawa, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. CoRR abs/1512.03012 (2015).
3. Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen Koltun. 2011. Probabilistic Reasoning for Assembly-based 3D Modeling. In SIGGRAPH.
4. Siddhartha Chaudhuri and Vladlen Koltun. 2010. Data-driven Suggestions for Creativity Support in 3D Modeling. In SIGGRAPH Asia.
5. Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. 2010. Large Scale Online Learning of Image Similarity Through Ranking. JMLR (2010).
6. Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 2016. 3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction.
7. Haoqiang Fan, Hao Su, and Leonidas Guibas. 2017. A Point Set Generation Network for 3D Object Reconstruction from a Single Image. CVPR (2017).
8. Matthew Fisher, Daniel Ritchie, Manolis Sawa, Thomas Funkhouser, and Pat Hanrahan. 2012. Example-based Synthesis of 3D Object Arrangements. SIGGRAPH Asia (2012).
9. Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. 2004. Modeling by Example. In SIGGRAPH.
10. A. Garcia-Garcia, F. Gomez-Donoso, J. Garcia-Rodriguez, S. Orts-Escolano, M. Cazorla, and J. Azorin-Lopez. 2016. PointNet: A 3D Convolutional Neural Network for real-time object class recognition. In IJCNN.
11. Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Abhinav Gupta. 2016. Learning a Predictable and Generative Vector Representation for Objects.
12. Aleksey Golovinskiy and Thomas Funkhouser. 2008. Randomized Cuts for 3D Mesh Analysis. ACM Transactions on Graphics (Proc. SIGGRAPH ASIA) 27, 5 (Dec. 2008).
13. Aleksey Golovinskiy and Thomas Funkhouser. 2009. Consistent Segmentation of 3D Models. Proc. SMI (2009).
14. Edward Grant, Pushmeet Kohli, and Marcel van Gerven. 2016. Deep Disentangled Representations for Volumetric Reconstruction.
15. R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimensionality Reduction by Learning an Invariant Mapping. In CVPR.
16. R. Hu, L. Fan, and L. Liu. 2012. Co-segmentation of 3D shapes via subspace clustering. SGP (2012).
17. Ruizhen Hu, Chenyang Zhu, Oliver van Kaick, Ligang Liu, Ariel Shamir, and Hao Zhang. 2015. Interaction Context (ICON): Towards a Geometric Functionality Descriptor. SIGGRAPH (2015).
18. Qixing Huang, Vladlen Koltun, and Leonidas Guibas. 2011. Joint shape segmentation with linear programming. In SIGGRAPH Asia.
19. Qixing Huang, Fan Wang, and Leonidas Guibas. 2014. Functional Map Networks for Analyzing and Exploring Large Shape Collections. ACM TOG 33 (2014).
20. Prakhar Jaiswal, Jinmiao Huang, and Rahul Rai. 2016. Assembly-based conceptual 3D modeling with unlabeled components using probabilistic factor graph. Computer-Aided Design (2016).
21. Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen Koltun. 2012. A Probabilistic Model for Component-based Shape Synthesis. SIGGRAPH (2012).
22. Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. 2010. Learning 3D mesh segmentation and labeling. In SIGGRAPH.
23. Vladimir G. Kim, Siddhartha Chaudhuri, Leonidas Guibas, and Thomas Funkhouser. 2014. Shape2Pose: Human-centric Shape Analysis. SIGGRAPH (2014).
24. Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaudhuri, Stephen DiVerdi, and Thomas Funkhouser. 2013. Learning Part-based Templates from Large Collections of 3D Shapes. SIGGRAPH (2013).
25. Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR (2014).
26. Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, and Max Welling. 2014. Semi-supervised Learning with Deep Generative Models. In NIPS.
27. Chen Kong, Chen-Hsuan Lin, and Simon Lucey. 2017. Using Locally Corresponding CAD Models for Dense 3D Reconstructions from a Single Image. CVPR (2017).
28. Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas. 2017. GRASS: Generative Recursive Autoencoders for Shape Structures. SIGGRAPH (2017).
29. Yangyan Li, Angela Dai, Leonidas Guibas, and Matthias Nießner. 2015. Database-Assisted Object Retrieval for Real-Time 3D Reconstruction. (2015).
30. A. Makadia and M. E. Yumer. 2014. Learning 3D Part Detection from Sparsely Labeled Data. In 3DV.
31. Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial Nets. CoRR abs/1411.1784 (2014).
32. Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. 2002. Shape Distributions. ACM TOG (2002).
33. Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2017. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR (2017).
34. C. R. Qi, H. Su, M. Nieçner, A. Dai, M. Yan, and L. J. Guibas. 2016. Volumetric and Multi-view CNNs for Object Classification on 3D Data. In CVPR.
35. Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. 2017. OctNet: Learning Deep 3D Representations at High Resolutions. CVPR (2017).
36. Tianjia Shao, Aron Monszpart, Youyi Zheng, Bongjin Koo, Weiwei Xu, Kun Zhou, and Niloy J. Mitra. 2014. Imagining the Unseen: Stability-based Cuboid Arrangements for Scene Understanding. SIGGRAPH Asia (2014).
37. Abhishek Sharma, Oliver Grau, and Mario Fritz. 2016. VConv-DAE: Deep Volumetric Shape Learning Without Object Labels.
38. Chao-Hui Shen, Hongbo Fu, Kang Chen, and Shi-Min Hu. 2012. Structure Recovery by Part Assembly. SIGGRAPH Asia (2012).
39. Oana Sidi, Oliver van Kaick, Yanir Kleiman, Hao Zhang, and Daniel Cohen-Or. 2011. Unsupervised Co-Segmentation of a Set of Shapes via Descriptor-Space Spectral Clustering. SIGGRAPH Asia (2011).
40. Kihyuk Sohn, Xinchen Yan, and Honglak Lee. 2015. Learning Structured Output Representation Using Deep Conditional Generative Models. In NIPS.
41. Hao Su, Yangyan Li, Charles Ruizhongtai Qi, Noa Fish, Daniel Cohen-Or, and Leonidas J Guibas. 2015a. Joint embeddings of shapes and images via cnn image purification. ACM Transactions on Graphics (TOG) 34, 6 (2015), 234.
42. Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015b. Multi-view Convolutional Neural Networks for 3D Shape Recognition. In ICCV.
43. Minhyuk Sung, Vladimir G. Kim, Roland Angst, and Leonidas Guibas. 2015. Data-driven Structural Priors for Shape Completion. SIGGRAPH Asia (2015).
44. Trimble. 2017. 3D Warehouse. (2017). https://3dwarehouse.sketchup.com/
45. Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Jitendra Malik. 2017. Multi-view Supervision for Single-view Reconstruction via Differentiable Ray Consistency. In CVPR.
46. Laurens van der Maaten. 2009. Learning a Parametric Embedding by Preserving Local Structure. In AISTATS.
47. Oliver van Kaick, Kai Xu, Hao Zhang, Yanzhen Wang, Shuyang Sun, Ariel Shamir, and Daniel Cohen-Or. 2013. Co-hierarchical analysis of shape structures. ACM TOG (2013).
48. Yunhai Wang, Shmulik Asafi, Oliver van Kaick, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2012. Active Co-analysis of a Set of Shapes. SIGGRAPH Asia (2012).
49. Jiajun Wu, Tianfan Xue, Joseph J. Lim, Yuandong Tian, Joshua B. Tenenbaum, Antonio Torralba, and William T. Freeman. 2016a. Single Image 3D Interpreter Network.
50. Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Freeman, and Joshua B Tenenbaum. 2016b. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In NIPS.
51. Zhirong Wu, Shuran Song, Aditya Khosla, Xiaoou Tang, and Jianxiong Xiao. 2015a. 3D ShapeNets for 2.5D Object Recognition and Next-Best-View Prediction. CVPR (2015).
52. Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and J. Xiao. 2015b. 3D ShapeNets: A deep representation for volumetric shapes. In CVPR.
53. Zhige Xie, Kai Xu, Ligang Liu, and Yueshan Xiong. 2014. 3D Shape Segmentation and Labeling via Extreme Learning Machine. SGP (2014).
54. Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2012. Fit and Diverse: Set Evolution for Inspiring 3D Shape Galleries. SIGGRAPH (2012).
55. Li Yi, Leonidas Guibas, Aaron Hertzmann, Vladimir G. Kim, Hao Su, and Ersin Yumer. 2017. Learning Hierarchical Shape Segmentation and Labeling from Online Repositories. SIGGRAPH (2017).
56. Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. 2016. A Scalable Active Framework for Region Annotation in 3D Shape Collections. SIGGRAPH Asia (2016).
57. Youyi Zheng, Daniel Cohen-Or, Melinos Averkiou, and Niloy J. Mitra. 2014. Recurring part arrangements in shape collections. (2014).
58. Youyi Zheng, Daniel Cohen-Or, and Niloy J. Mitra. 2013. Smart Variations: Functional Substructures for Part Compatibility. Eurographics (2013).


