“Color changing effects with anisotropic halftone prints on metal” by Pjanic and Hersch
Conference:
Type(s):
Title:
- Color changing effects with anisotropic halftone prints on metal
Session/Category Title: Color and Sketching
Presenter(s)/Author(s):
Abstract:
We propose a color reproduction framework for creating specularly reflecting color images printed on a metallic substrate that change hue or chroma upon in-plane rotation by 90°. This framework is based on the anisotropic dot gain of line halftones when viewed under specular reflection. The proposed framework relies on a spectral prediction model specially conceived for predicting the color of non-rotated and of 90° in-plane rotated cross-halftones formed of superpositions of horizontal and vertical cyan, magenta and yellow line halftones. Desired non-rotated and rotated image colors are mapped onto the sub-gamut allowing for the desired hue or chroma shift and then, using a 6D correspondence table, converted to optimal cross-halftone ink surface coverages. The proposed recolorization and decolorization framework is especially effective for creating surprising effects such as image parts whose hues change, or gray regions that become colorful. It can be adapted to commercial printers capable of printing with cyan, magenta and yellow inks on substrates formed by an ink attracting polymer lying on top of a metallic film layer. Applications may include art, advertisement, exhibitions and document security.
References:
1. Alexa, M, and Matusik, W. 2010. Reliefs as images. ACM Trans. on Graphics 29, 4 (July), 60:1–60:7.
2. Balasubramanian, R. 1999. Optimization of the spectral Neugebauer model for printer characterization, Journal of Electronic Imaging 8, 2, 156–166.
3. Bermano, A., Baran, I., Alexa, M., Matusik, W. 2012. ShadowPix: Multiple images from self shadowing, Computer Graphics Forum 31, 593–602.
4. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and Taubin, G. 1999. The Ball-Pivoting Algorithm for Surface Reconstruction, IEEE Trans. Vis. and Comp. Graph. 5, 4, 349–359.
5. Dong, Y., Tong X., Pellacini, F., and Guo, B. 2012. Printing spatially-varying reflectance for reproducing HDR images, ACM Trans. Graph. 31, 4 (July), 40:1–40:7.
6. Glasner, D., Zickler, T., Levin, A. 2014. A Reflectance Display, ACM Trans. Graph. 33, 4, (July), 61:1–61:12.
7. Hersch, R. D., Collaud, F., Emmel, P. 2003. Reproducing color images with embedded metallic patterns, Proceedings SIGGRAPH, ACM Trans. Graph. 22, 3, 427–436.
8. Hunt, R. W. G. 1952. Light and dark adaptation and the perception of color, J. Opt. Soc. Am. 42, 190–199.
9. Lan, Y., Dong, Y., Pellacini, F., Tong, X. 2013. Bi-scale appearance fabrication. ACM Trans. Graph. 32, 4, 145:1–145:11.
10. Levin, A., Glasner, D., Xiong, Y. Durand, F., Freeman, W., Matusik, W., Zickler, T. 2013. Fabricating BRDFs at High Spatial Resolution Using Wave Optics, ACM Trans. Graph 32, 4,144:1–13
11. Maile F. J., Pfaff G., Reynders P. 2005. 2005. Effect pigments — past, present and future, Progress in Organic Coatings 54, 150–163.
12. Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., Davis, J. 2012. Printing reflectance functions, ACM Trans. on Graphics 31, 3, 20:1–20:11.
13. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., Rusinkiewicz, S. 2009. Printing Spatially-Varying Reflectance, ACM Trans. Graph. 28, 5, 128:1–128:9.
14. Morovic, J., and Lammens, J. 2007. Color Management, in Colorimetry: Understanding the CIE system, (Ed. J. Schanda), Chapter 7, J. Wiley, 159–206.
15. Morovic, J., Luo, M. R. 2001. The fundamentals of gamut mapping: A survey, Journal of Imaging Science and Technology 45, 3, 283–290.
16. Papas, M., Houit, T., Nowrouzezahrai, D., Gross, M., Jarosz, W. 2012. The Magic Lens: Refractive Steganography, ACM Trans. Graph. 31, 6, Article No. 186:1–186:10.
17. Phillips, R. W., Bleikolm A. F. 1996. Optical coatings for document security, Applied Optics 35, 28, 5529–5534.
18. Pjanic, P., Hersch, R. D. 2013. Specular color imaging on a metallic substrate, In Proc. IS&T 21st Color Imaging Conference, 61–68.
19. Powell, M. J. D. 2009. The BOBYQA algorithm for bound constrained optimization without derivatives, Cambridge NA Report NA2009/06, University of Cambridge, UK, see http://www6.cityu.edu.hk/rcms/publications/preprint26.pdf
20. Rossier, R., Hersch, R. D. 2010. Introducing ink spreading within the cellular Yule-Nielsen modified Neugebauer model, In Proc. IS&T 18th Color Imaging Conference, 295–300.
21. Sharma, G. 2003. Color fundamentals for digital imaging, in Digital Color Imaging Handbook (G. Sharma Ed.), Chapter 1, CRC Press, 1–114.
22. Schwartzburg, Y., Testuz, R., Tagliasacchi, A., Pauly, M. 2014. High-contrast Computational Caustic Design, ACM Trans. on Graph. 33, 4, 74:1–74:11.
23. Stollnitz, E. J., Ostromoukhov, V., salesin, D. H. 1998. Reproducing Color Images Using Custom Inks, Proc. SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference Series, 267–274.
24. Viggiano J. A. S. 1990. Modeling the Color of Multi-Colored Halftones, TAGA Proceedings 42, 44–62
25. Wyscecki G., and Stiles W. S., Color Science, J. Wiley, 1982.
26. Ye, G., Jolly, S., Bove, V. M. Jr., Dai, Q., Raskar, R., Wetzstein, G. 2014. Toward BxDF display using multilayer diffraction. ACM Trans. Graph. 33, 6, 191:1–191:14.


