“Circularly polarized spherical illumination reflectometry”
Conference:
Type(s):
Title:
- Circularly polarized spherical illumination reflectometry
Session/Category Title: Imaging hardware
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We present a novel method for surface reflectometry from a few observations of a scene under a single uniform spherical field of circularly polarized illumination. The method is based on a novel analysis of the Stokes reflectance field of circularly polarized spherical illumination and yields per-pixel estimates of diffuse albedo, specular albedo, index of refraction, and specular roughness of isotropic BRDFs. To infer these reflectance parameters, we measure the Stokes parameters of the reflected light at each pixel by taking four photographs of the scene, consisting of three photographs with differently oriented linear polarizers in front of the camera, and one additional photograph with a circular polarizer. The method only assumes knowledge of surface orientation, for which we make a few additional photometric measurements. We verify our method with three different lighting setups, ranging from specialized to off-the-shelf hardware, which project either discrete or continuous fields of spherical illumination. Our technique offers several benefits: it estimates a more detailed model of per-pixel surface reflectance parameters than previous work, it requires a relatively small number of measurements, it is applicable to a wide range of material types, and it is completely viewpoint independent.
References:
1. Ashikhmin, M., Premoze, S., and Shirley, P. S. 2000. A microfacet-based BRDF generator. In Proceedings of ACM SIGGRAPH 2000, 65–74. Google ScholarDigital Library
2. Atkinson, G. A., and Hancock, E. R. 2005. Multi-view surface reconstruction using polarization. In ICCV, 309–316. Google ScholarDigital Library
3. Atkinson, G. A., and Hancock, E. R. 2007. Shape estimation using polarization and shading from two views. PAMI 29, 11, 2001–2017. Google ScholarDigital Library
4. Atkinson, G. A., and Hancock, E. R. 2008. Two-dimensional brdf estimation from polarisation. Comput. Vis. Image Underst. 111, 2, 126–141. Google ScholarDigital Library
5. Chen, H., and Wolff, L. B. 1998. Polarization phase-based method for material classification in computer vision. IJCV 28, 1, 73–83. Google ScholarDigital Library
6. Collett, E. 2005. Field Guide to Polarization, SPIE Field Guides vol. FG05. SPIE.Google Scholar
7. Cula, O. G., Dana, K. J., Pai, D. K., and Wang, D. 2007. Polarization multiplexing and demultiplexing for appearance-based modeling. PAMI 29, 2, 362–367. Google ScholarDigital Library
8. Dana, K. J., Livescu, G., and Makonahalli, R. 2009. Transparent watermarking using bidirectional imaging. In IEEE International Workshop on Projector Camera Systems, in conjunction with CVPR.Google Scholar
9. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In ACM SIGGRAPH. Google ScholarDigital Library
10. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. In ACM TOG, 749–758. Google ScholarDigital Library
11. Georghiades, A. 2003. Recovering 3-D shape and reflectance from a small number of photographs. In Rendering Techniques, 230–240. Google ScholarDigital Library
12. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. E. 2009. Estimating specular roughness and anisotropy from second order spherical gradient illumination. Comput. Graph. Forum 28, 4, 1161–1170. Google ScholarDigital Library
13. Goldman, D. B., Curless, B., Hertzmann, A., and Seitz, S. M. 2005. Shape and spatially-varying brdfs from photometric stereo. In ICCV, 341–348. Google ScholarDigital Library
14. He, X. D., Torrance, K. E., Sillion, F. X., and Greenberg, D. P. 1991. A comprehensive physical model for light reflection. SIGGRAPH Comput. Graph. 25, 4, 175–186. Google ScholarDigital Library
15. Healey, G. 1992. Using color for geometry-insensitive segmentation. 52–69. Google ScholarDigital Library
16. Koshikawa, K. 1992. A polarimetric approach to shape understanding of glossy objects. 190–192. Google ScholarDigital Library
17. Lafortune, E. P. F., Foo, S.-C., Torrance, K. E., and Greenberg, D. P. 1997. Non-linear approximation of reflectance functions. In SIGGRAPH ’97, 117–126. Google ScholarDigital Library
18. Lee, S., Koo, H., Cho, N., and Park, J. 2006. Stochastic approach to separate diffuse and specular reflections. In ICIP.Google Scholar
19. Lensch, H. P. A., Goesele, M., Kautz, J., Heidrich, W., and Seidel, H.-P. 2001. Image-based reconstruction of spatially varying materials. In Rendering Techniques, 103–114. Google ScholarDigital Library
20. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM TOG 22, 2, 234–257. Google ScholarDigital Library
21. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Rendering Techniques, 183–194. Google ScholarDigital Library
22. Mallick, S. P., Zickler, T., Belhumeur, P. N., and Kriegman, D. J. 2006. Specularity removal in images and videos: A pde approach. In ECCV. Google ScholarDigital Library
23. Marschner, S. R., Westin, S. H., Lafortune, E. P. F., Torrance, K. E., and Greenberg, D. P. 1999. Image-based BRDF measurement including human skin. In Rendering Techniques. Google ScholarDigital Library
24. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. In ACM TOG, 759–769. Google ScholarDigital Library
25. Miyazaki, D., and Ikeuchi, K. 2007. Shape estimation of transparent objects by using inverse polarization ray tracing. PAMI 29, 11, 2018–2030. Google ScholarDigital Library
26. Miyazaki, D., Kagesawa, M., and Ikeuchi, K. 2003. Polarization-based transparent surface modeling from two views. In ICCV, 1381. Google ScholarDigital Library
27. Miyazaki, D., Kagesawa, M., and Ikeuchi, K. 2004. Transparent surface modeling from a pair of polarization images. PAMI 26, 1, 73–82. Google ScholarDigital Library
28. Müller, V. 1996. Elimination of specular surface-reflectance using polarized and unpolarized light. In ECCV.Google Scholar
29. Nayar, S., Ikeuchi, K., and Kanade, T. 1990. Determining shape and reflectance of hybrid surfaces by photometric sampling. IEEE Transactions on Robotics and Automation 6, 4, 418–431.Google ScholarCross Ref
30. Nayar, S., Fang, X., and Boult, T. 1993. Removal of Specularities using Color and Polarization. In CVPR.Google Scholar
31. Nayar, S. K., Fang, X.-S., and Boult, T. 1997. Separation of reflection components using color and polarization. IJCV 21, 3. Google ScholarDigital Library
32. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometric considerations and nomenclature for reflectance. National Bureau of Standards Monograph 160.Google Scholar
33. Peers, P., Hawkins, T., and Debevec, P. 2006. A reflective light stage. Tech. Rep. ICT Technical Report ICT-TR-04.2006, ICT-USC.Google Scholar
34. Priest, R. G., and Germer, T. A. 2000. Polarimetric brdf in the microfacet model: theory and measurements. In Proc. of the 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors 1, 169–181.Google Scholar
35. Rahmann, S., and Canterakis, N. 2001. Reconstruction of specular surfaces using polarization imaging. CVRP 1, 149.Google Scholar
36. Sadjadiz, F., and Sadjadi, F. 2007. Extraction of surface normal and index of refraction using a pair of passive infrared polarimetric sensors. In IEEE Conference on Computer Vision and Pattern Recognition, 1–5.Google Scholar
37. Saito, M., Sato, Y., Ikeuchi, K., and Kashiwagi, H. 1999. Measurement of surface orientations of transparent objects by use of polarization in highlight. J. Opt. Soc. Am. A 16, 9, 2286–2293.Google ScholarCross Ref
38. Shafer, S. 1985. Using color to separate reflection components. COLOR Research and Applications 10, 4.Google ScholarCross Ref
39. Thilak, V., Voelz, D. G., and Creusere, C. D. 2007. Polarization-based index of refraction and reflection angle estimation for remote sensing applications. Appl. Opt. 46, 30, 7527–7536.Google ScholarCross Ref
40. Tominaga, S., and Yamamoto, T. 2008. Metal-dielectric object classification by polarization degree map. In CVPR, 1–4.Google Scholar
41. Torrance, K. E., and Sparrow, E. M. 1967. Theory of off-specular reflection from roughened surfaces. J. Opt. Soc. Am. 57, 1104–1114.Google ScholarCross Ref
42. Umeyama, S., and Godin, G. 2004. Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images. PAMI 26, 5. Google ScholarDigital Library
43. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. SIGGRAPH Comput. Graph. 26, 2, 265–272. Google ScholarDigital Library
44. Wolff, L. B., and Boult, T. E. 1991. Constraining object features using a polarization reflectance model. PAMI 13, 7, 635–657. Google ScholarDigital Library
45. Wolff, L. B. 1989. Surface orientation from two camera stereo with polarizers. In Proc. SPIE Conf. Optics, Illumination and Image Sensing for Machine Vision IV, vol. 1194, 287–297.Google Scholar
46. Wolff, L. B. 1990. Polarization-based material classification from specular reflection. PAMI 12, 11, 1059–1071. Google ScholarDigital Library
47. Zickler, T., Ramamoorthi, R., Enrique, S., and Belhumeur, P. N. 2006. Reflectance sharing: Predicting appearance from a sparse set of images of a known shape. PAMI 28, 8, 1287–1302. Google ScholarDigital Library


