“Blind video temporal consistency” by Bonneel, Tompkin, Sunkavalli, Sun, Paris, et al. …
Conference:
Type(s):
Title:
- Blind video temporal consistency
Session/Category Title: Video Processing
Presenter(s)/Author(s):
Abstract:
Extending image processing techniques to videos is a non-trivial task; applying processing independently to each video frame often leads to temporal inconsistencies, and explicitly encoding temporal consistency requires algorithmic changes. We describe a more general approach to temporal consistency. We propose a gradient-domain technique that is blind to the particular image processing algorithm. Our technique takes a series of processed frames that suffers from flickering and generates a temporally-consistent video sequence. The core of our solution is to infer the temporal regularity from the original unprocessed video, and use it as a temporal consistency guide to stabilize the processed sequence. We formally characterize the frequency properties of our technique, and demonstrate, in practice, its ability to stabilize a wide range of popular image processing techniques including enhancement and stylization of color and tone, intrinsic images, and depth estimation.
References:
1. Aubry, M., Paris, S., Hasinoff, S., Kautz, J., and Durand, F. 2014. Fast local laplacian filters: Theory and applications. ACM Trans. on Graphics (SIGGRAPH).
2. Aydin, T. O., Stefanoski, N., Croci, S., Gross, M., and Smolic, A. 2014. Temporally coherent local tone mapping of hdr video. ACM Trans. Graph. 33, 6 (Nov.), 196:1–196:13.
3. Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. 2009. PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Trans. on Graphics (SIGGRAPH) 28, 3.
4. Bell, S., Bala, K., and Snavely, N. 2014. Intrinsic images in the wild. ACM Trans. on Graphics (SIGGRAPH) 33, 4.
5. Besse, F., Rother, C., Fitzgibbon, A., and Kautz, J. 2012. Pmbp: Patchmatch belief propagation for correspondence field estimation. In BMVC – Best Industrial Impact Prize award.
6. Bhat, P., Curless, B., Cohen, M., and Zitnick, C. L. 2008. Fourier analysis of the 2d screened poisson equation for gradient domain problems. In ECCV, 114–128.
7. Bhat, P., Zitnick, C. L., Cohen, M., and Curless, B. 2010. Gradientshop: A gradient-domain optimization framework for image and video filtering. ACM Trans Graph (SIGGRAPH) 29, 2.
8. Bonneel, N., Sunkavalli, K., Paris, S., and Pfister, H. 2013. Example-based video color grading. ACM Trans. on Graphics (SIGGRAPH) 32, 4.
9. Bonneel, N., Sunkavalli, K., Tompkin, J., Sun, D., Paris, S., and Pfister, H. 2014. Interactive intrinsic video editing. ACM Trans. on Graphics (SIGGRAPH Asia) 33, 6.
10. Bonneel, N., Rabin, J., Peyr’e, G., and Pfister, H. 2015. Sliced and radon wasserstein barycenters of measures. Journal of Mathematical Imaging and Vision 51, 1, 2245.
11. Butler, D. J., Wulff, J., Stanley, G. B., and Black, M. J. 2012. A naturalistic open source movie for optical flow evaluation. In European Conf. on Computer Vision (ECCV), 611–625.
12. Chen, J., Paris, S., and Durand, F. 2007. Real-time edge-aware image processing with the bilateral grid. ACM Trans. on Graphics (SIGGRAPH).
13. Delon, J., and Desolneux, A. 2010. Stabilization of flicker-like effects in image sequences through local contrast correction. SIAM Journal on Imaging Sciences 3, 4, 703–734.
14. Dong, X., Bonev, B., Zhu, Y., and Yuille, A. L. 2015. Region-based temporally consistent video post-processing. In IEEE Conference on Computer Vision and Pattern Recognition.
15. Durand, F., and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. In Proc. of the 29th Annual Conference on Computer Graphics and Interactive Techniques, ACM, SIGGRAPH ’02, 257–266.
16. Eigen, D., Puhrsch, C., and Fergus, R. 2014. Depth map prediction from a single image using a multi-scale deep network. In NIPS’14, 2366–2374.
17. Elder, J. H. 1999. Are edges incomplete? Int. J. Comput. Vision 34, 2-3 (Oct.), 97–122.
18. Farbman, Z., and Lischinski, D. 2011. Tonal stabilization of video. ACM Trans. on Graphics (SIGGRAPH) 30, 4, 89:1–89:9.
19. Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. ACM Trans. on Graphics (SIGGRAPH).
20. Gijsenij, A., Gevers, T., and van de weijer, J. 2010. Generalized gamut mapping using image derivative structures for color constancy. Int. J. Comput. Vision 86, 2-3, 127–139.
21. Gijsenij, A., Gevers, T., and van de Weijer, J. 2012. Improving color constancy by photometric edge weighting. IEEE Trans on Pattern Analysis and Machine Intelligence 34, 5, 918–929.
22. HaCohen, Y., Shechtman, E., Goldman, D. B., and Lischinski, D. 2011. Non-rigid dense correspondence with applications for image enhancement. ACM Trans. on Graphics (SIGGRAPH) 30, 4, 70:1–70:9.
23. He, K., Sun, J., and Tang, X. 2009. Single image haze removal using dark channel prior. In IEEE Conference on Computer Vision and Pattern Recognition, 1956–1963.
24. Hsu, E., Mertens, T., Paris, S., Avidan, S., and Durand, F. 2008. Light mixture estimation for spatially varying white balance. ACM Trans. on Graphics (SIGGRAPH), 70:1–70:7.
25. Kalantari, N. K., Shechtman, E., Barnes, C., Darabi, S., Goldman, D. B., and Sen, P. 2013. Patch-based High Dynamic Range Video. ACM Trans. Graph. (SIGGRAPH Asia) 32, 6.
26. Kong, N., Gehler, P. V., and Black, M. J. 2014. Intrinsic video. In Eur. Conf. Comp. Vision (ECCV), vol. 8690, 360–375.
27. Kronander, J., Gustavson, S., Bonnet, G., and Unger, J. 2013. Unified hdr reconstruction from raw cfa data. IEEE Int. Conference on Computational Photography (ICCP).
28. Lang, M., Wang, O., Aydin, T., Smolic, A., and Gross, M. 2012. Practical temporal consistency for image-based graphics applications. ACM Trans. Graph. (SIGGRAPH) 31, 4, 34:1–34:8.
29. Liu, C. 2009. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. PhD thesis, Massachusetts Institute of Technology.
30. Paris, S., Hasinoff, S. W., and Kautz, J. 2011. Local laplacian filters: Edge-aware image processing with a laplacian pyramid. ACM Trans. on Graphics (SIGGRAPH), 68:1–68:12.
31. Paris, S. 2008. Edge-preserving smoothing and mean-shift segmentation of video streams. In ECCV.
32. Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. ACM Trans. on Graphics (SIGGRAPH) 22, 3.
33. Pitié, F., Dahyot, R., Kelly, F., and Kokaram, A. 2004. A new robust technique for stabilizing brightness fluctuations in image sequences. In Statistical Methods in Video Processing. Springer, 153–164.
34. Pitié, F., Kent, B., Collis, B., and Kokaram, A. 2006. Localised deflicker of moving images. In IEEE European Conference on Visual Media Production.
35. RE:Vision, 2015. De:flicker v.1.3.0. http://www.revisionfx.com/products/deflicker/.
36. Roo, J. S., and Richardt, C. 2014. Temporally coherent video de-anaglyph. ACM Trans. on Graphics (SIGGRAPH).
37. Shahrian, E., Rajan, D., Price, B., and Cohen, S. 2013. Improving image matting using comprehensive sampling sets. In IEEE Conf. Comp. Vision and Pattern Recognition, 636–643.
38. Sun, D., Roth, S., and Black, M. J. 2014. A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vision 106, 2, 115–137.
39. Tang, K., Yang, J., and Wang, J. 2014. Investigating haze-relevant features in a learning framework for image dehazing. In IEEE Conf. Comp. Vision and Pattern Recognition, 2995–3002.
40. van Roosmalen, P. M. B. 1999. Restoration of archived film and video. TU Delft.
41. Wang, C.-M., Huang, Y.-H., and Huang, M.-L. 2006. An effective algorithm for image sequence color transfer. Mathematical and Computer Modelling 44, 78, 608–627.
42. Weinstock, R. 1974. Calculus of variations : with applications to physics and engineering. Dover books on advanced mathematics. Dover. Originally published by McGraw-Hill, in 1952.
43. Werlberger, M., Pock, T., and Bischof, H. 2010. Motion estimation with non-local total variation regularization. In IEEE Conference on Computer Vision and Pattern Recognition.
44. Winnemöller, H., Olsen, S. C., and Gooch, B. 2006. Real-time video abstraction. ACM Trans. on Graphics (SIGGRAPH), 1221–1226.
45. Wulff, J., and Black, M. J. 2015. Efficient sparse-to-dense optical flow estimation using a learned basis and layers. In IEEE Conference on Computer Vision and Pattern Recognition.
46. Ye, G., Garces, E., Liu, Y., Dai, Q., and Gutierrez, D. 2014. Intrinsic Video and Applications. ACM Trans. Graph. (SIGGRAPH) 33, 4.
47. Zhao, Q., Tan, P., Dai, Q., Shen, L., Wu, E., and Lin, S. 2012. A closed-form solution to retinex with nonlocal texture constraints. IEEE Trans. Pattern Anal. Mach. Intell. 34, 7, 1437–1444.


