“Beyond mie theory: systematic computation of bulk scattering parameters based on microphysical wave optics” by Guo, Jarabo and Zhao
Conference:
Type(s):
Title:
- Beyond mie theory: systematic computation of bulk scattering parameters based on microphysical wave optics
Session/Category Title: Light Interactions and Differentiable Rendering
Presenter(s)/Author(s):
Abstract:
Light scattering in participating media and translucent materials is typically modeled using the radiative transfer theory. Under the assumption of independent scattering between particles, it utilizes several bulk scattering parameters to statistically characterize light-matter interactions at the macroscale. To calculate these parameters based on microscale material properties, the Lorenz-Mie theory has been considered the gold standard. In this paper, we present a generalized framework capable of systematically and rigorously computing bulk scattering parameters beyond the far-field assumption of Lorenz-Mie theory. Our technique accounts for microscale wave-optics effects such as diffraction and interference as well as interactions between nearby particles. Our framework is general, can be plugged in any renderer supporting Lorenz-Mie scattering, and allows arbitrary packing rates and particles correlation; we demonstrate this generality by computing bulk scattering parameters for a wide range of materials, including anisotropic and correlated media.
References:
1. Carlos Aliaga, Carlos Castillo, Diego Gutierrez, Miguel A Otaduy, Jorge Lopez-Moreno, and Adrian Jarabo. 2017. An appearance model for textile fibers. Computer Graphics Forum 36, 4 (2017), 35–45.
2. Marco Ament, Christoph Bergmann, and Daniel Weiskopf. 2014. Refractive radiative transfer equation. ACM Trans. Graph. 33, 2 (2014), 1–22.
3. Chen Bar, Marina Alterman, Ioannis Gkioulekas, and Anat Levin. 2019. A Monte Carlo framework for rendering speckle statistics in scattering media. ACM Trans. Graph. 38, 4 (2019), 1–22.
4. Chen Bar, Ioannis Gkioulekas, and Anat Levin. 2020. Rendering near-field speckle statistics in scattering media. ACM Trans. Graph. 39, 6 (2020), 1–18.
5. Laurent Belcour and Pascal Barla. 2017. A practical extension to microfacet theory for the modeling of varying iridescence. ACM Trans. Graph. 36, 4 (2017).
6. Benedikt Bitterli, Srinath Ravichandran, Thomas Müller, Magnus Wrenninge, Jan Novák, Steve Marschner, and Wojciech Jarosz. 2018. A radiative transfer framework for non-exponential media. ACM Trans. Graph. 37, 6 (2018), 225.
7. Tom Cuypers, Tom Haber, Philippe Bekaert, Se Baek Oh, and Ramesh Raskar. 2012. Reflectance Model for Diffraction. ACM Trans. Graph. 31, 5 (2012).
8. Zhao Dong, Bruce Walter, Steve Marschner, and Donald P Greenberg. 2015. Predicting appearance from measured microgeometry of metal surfaces. ACM Trans. Graph. 35, 1 (2015), 1–13.
9. Amos Egel, Lorenzo Pattelli, Giacomo Mazzamuto, Diederik S Wiersma, and Uli Lemmer. 2017. CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres. Journal of Quantitative Spectroscopy and Radiative Transfer 199 (2017), 103–110.
10. Viggo Falster, Adrian Jarabo, and Jeppe Revall Frisvad. 2020. Computing the Bidirectional Scattering of a Microstructure Using Scalar Diffraction Theory and Path Tracing. Computer Graphics Forum 39, 7 (2020).
11. Leslie L Foldy. 1945. The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Physical review 67, 3-4 (1945), 107.
12. Jeppe Revall Frisvad, Niels Jørgen Christensen, and Henrik Wann Jensen. 2007. Computing the scattering properties of participating media using Lorenz-Mie theory. ACM Trans. Graph. 26, 3 (2007), 60–es.
13. Jeppe Revall Frisvad, Søren Alkærsig Jensen, Jonas Skovlund Madsen, Antônio Correia, Li Yang, SØren Kimmer Schou Gregersen, Youri Meuret, and P-E Hansen. 2020. Survey of models for acquiring the optical properties of translucent materials. Computer Graphics Forum 39, 2 (2020), 729–755.
14. Ioannis Gkioulekas, Bei Xiao, Shuang Zhao, Edward H Adelson, Todd Zickler, and Kavita Bala. 2013. Understanding the role of phase function in translucent appearance. ACM Trans. Graph. 32, 5 (2013), 1–19.
15. Werner J Glantschnig and Sow-Hsin Chen. 1981. Light scattering from water droplets in the geometrical optics approximation. Applied Optics 20, 14 (1981), 2499–2509.
16. Jay S. Gondek, Gary W. Meyer, and Jonathan G. Newman. 1994. Wavelength dependent reflectance functions. In Proceedings of SIGGRAPH’94.
17. Ibón Guillén, Julio Marco, Diego Gutierrez, Wenzel Jakob, and Adrian Jarabo. 2020. A general framework for pearlescent materials. ACM Trans. Graph. 39, 6 (2020), 1–15.
18. Jie Guo, Bingyang Hu, Yanjun Chen, Yuanqi Li, Yanwen Guo, and Ling-Qi Yan. 2021. Rendering Discrete Participating Media with Geometrical Optics Approximation. arXiv preprint arXiv:2102.12285 (2021).
19. Diego Gutierrez, Francisco J Seron, Adolfo Munoz, and Oscar Anson. 2008. Visualizing underwater ocean optics. Computer Graphics Forum 27, 2 (2008), 547–556.
20. Xiao D He, Kenneth E Torrance, Francois X Sillion, and Donald P Greenberg. 1991. A comprehensive physical model for light reflection. ACM SIGGRAPH computer graphics 25, 4 (1991), 175–186.
21. Eric Heitz, Jonathan Dupuy, Cyril Crassin, and Carsten Dachsbacher. 2015. The SGGX microflake distribution. ACM Trans. Graph. 34, 4 (2015), 1–11.
22. Louis G Henyey and Jesse Leonard Greenstein. 1941. Diffuse radiation in the galaxy. The Astrophysical Journal 93 (1941), 70–83.
23. Nicolas Holzschuch and Romain Pacanowski. 2017. A two-scale microfacet reflectance model combining reflection and diffraction. ACM Trans. Graph. 36, 4 (2017).
24. Dietmar Jackel and Bruce Walter. 1997. Modeling and rendering of the atmosphere using Mie-scattering. Computer Graphics Forum 16, 4 (1997), 201–210.
25. Wenzel Jakob, Adam Arbree, Jonathan T Moon, Kavita Bala, and Steve Marschner. 2010. A radiative transfer framework for rendering materials with anisotropic structure. ACM Trans. Graph. 29, 4 (2010), 1–13.
26. Adrian Jarabo, Carlos Aliaga, and Diego Gutierrez. 2018. A radiative transfer framework for spatially-correlated materials. ACM Trans. Graph. 37, 4 (2018), 1–13.
27. Adrian Jarabo and Victor Arellano. 2018. Bidirectional rendering of vector light transport. Computer Graphics Forum 37, 6 (2018), 96–105.
28. James T Kajiya. 1986. The rendering equation. In Proceedings of SIGGRAPH’86. 143–150.
29. Philip Laven. 2011. MiePlot. http://www.philiplaven.com/mieplot.htm.
30. Melvin Lax. 1951. Multiple scattering of waves. Reviews of Modern Physics 23, 4 (1951), 287.
31. Daniel W Mackowski and Michael I Mishchenko. 1996. Calculation of the T matrix and the scattering matrix for ensembles of spheres. JOSA A 13, 11 (1996), 2266–2278.
32. Daniel W Mackowski and Michael I Mishchenko. 2011. A multiple sphere T-matrix Fortran code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer 112, 13 (2011), 2182–2192.
33. Johannes Meng, Marios Papas, Ralf Habel, Carsten Dachsbacher, Steve Marschner, Markus H Gross, and Wojciech Jarosz. 2015. Multi-scale modeling and rendering of granular materials. ACM Trans. Graph. 34, 4 (2015), 49–1.
34. Michael I Mishchenko. 2002. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Applied optics 41, 33 (2002), 7114–7134.
35. Michael I Mishchenko. 2013. 125 years of radiative transfer: Enduring triumphs and persisting misconceptions. In AIP Conference Proceedings, Vol. 1531. American Institute of Physics, 11–18.
36. Michael I Mishchenko. 2014. Electromagnetic scattering by particles and particle groups: an introduction. Cambridge University Press.
37. Michael I Mishchenko, Larry D Travis, and Andrew A Lacis. 2006. Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge University Press.
38. Hans P Moravec. 1981. 3d graphics and the wave theory. In Proceedings of SIGGRAPH’83. 289–296.
39. Thomas Müller, Marios Papas, Markus Gross, Wojciech Jarosz, and Jan Novák. 2016. Efficient rendering of heterogeneous polydisperse granular media. ACM Trans. Graph. 35, 6 (2016), 1–14.
40. A Musbach, GW Meyer, F Reitich, and SH Oh. 2013. Full wave modelling of light propagation and reflection. Computer Graphics Forum 32, 6 (2013), 24–37.
41. Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo methods for volumetric light transport simulation. Computer Graphics Forum 37, 2 (2018), 551–576.
42. Bo Peterson and Staffan Ström. 1973. T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E (3). Physical review D 8, 10 (1973), 3661.
43. Iman Sadeghi, Adolfo Munoz, Philip Laven, Wojciech Jarosz, Francisco Seron, Diego Gutierrez, and Henrik Wann Jensen. 2012. Physically-based simulation of rainbows. ACM Trans. Graph. 31, 1 (2012), 1–12.
44. Raymond A Shaw, Alexander B Kostinski, and Daniel D Lanterman. 2002. Super-exponential extinction of radiation in a negatively correlated random medium. Journal of quantitative spectroscopy and radiative transfer 75, 1 (2002), 13–20.
45. Brian E. Smits and Gary W. Meyer. 1992. Newton’s colors: simulating interference phenomena in realistic image synthesis. In Photorealism in Computer Graphics. Springer.
46. Jos Stam. 1999. Diffraction Shaders. In Proceedings of SIGGRAPH’99.
47. Shlomi Steinberg. 2019. Analytic Spectral Integration of Birefringence-Induced Iridescence. Computer Graphics Forum 38, 4 (2019).
48. Shlomi Steinberg and Ling-Qi Yan. 2021. A generic framework for physical light transport. ACM Trans. Graph. 40, 4 (2021), 1–20.
49. Antoine Toisoul and Abhijeet Ghosh. 2017. Practical acquisition and rendering of diffraction effects in surface reflectance. ACM Trans. Graph. 36, 5 (2017).
50. Leung Tsang, Jin Au Kong, and Robert T Shin. 1985. Theory of microwave remote sensing. John Wiley & Sons.
51. Hendrik Christoffel van der Hulst. 1981. Light scattering by small particles. Courier Corporation.
52. Eugene von Lommel. 1889. Die Photometrie der diffusen Zurückwerfung. Annalen der Physik 272, 2 (1889), 473–502.
53. PC Waterman. 1965. Matrix formulation of electromagnetic scattering. Proc. IEEE 53, 8 (1965), 805–812.
54. Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias B. Hullin. 2017. Scratch Iridescence: Wave-optical Rendering of Diffractive Surface Structure. ACM Trans. Graph. 36, 6 (2017).
55. Alexander Wilkie, Robert F Tobler, and Werner Purgathofer. 2001. Combined rendering of polarization and fluorescence effects. In Eurographics Workshop on Rendering Techniques. Springer, 197–204.
56. Te-Kao Wu and L Tsai. 1977. Scattering by arbitrarily cross-sectioned layered, lossy dielectric cylinders. IEEE Transactions on Antennas and Propagation 25, 4 (1977), 518–524.
57. Mengqi Xia, Bruce Walter, Eric Michielssen, David Bindel, and Steve Marschner. 2020. A wave optics based fiber scattering model. ACM Trans. Graph. 39, 6 (2020), 1–16.
58. Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi. 2018. Rendering specular microgeometry with wave optics. ACM Trans. Graph. 37, 4 (2018).
59. Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. 2011. Building volumetric appearance models of fabric using micro CT imaging. ACM Trans. Graph. 30, 4 (2011), 1–10.


