“AppGen: interactive material modeling from a single image” – ACM SIGGRAPH HISTORY ARCHIVES

“AppGen: interactive material modeling from a single image”

  • 2011-SA-Technical-Paper_Dong_AppGen

Conference:


Type(s):


Title:

    AppGen: interactive material modeling from a single image

Session/Category Title:   Material Editing


Presenter(s)/Author(s):



Abstract:


    We present AppGen, an interactive system for modeling materials from a single image. Given a texture image of a nearly planar surface lit with directional lighting, our system models the detailed spatially-varying reflectance properties (diffuse, specular and roughness) and surface normal variations with minimal user interaction. We ask users to indicate global shading and reflectance information by roughly marking the image with a few user strokes, while our system assigns reflectance properties and normals to each pixel. We first interactively decompose the input image into the product of a diffuse albedo map and a shading map. A two-scale normal reconstruction algorithm is then introduced to recover the normal variations from the shading map and preserve the geometric features at different scales. We finally assign the specular parameters to each pixel guided by user strokes and the diffuse albedo. Our system generates convincing results within minutes of interaction and works well for a variety of material types that exhibit different reflectance and normal variations, including natural surfaces and man-made ones.

References:


    1. An, X., and Pellacini, F. 2008. Appprop: all-pairs appearance-space edit propagation. ACM Trans. Graph. 27 (August), 40:1–40:9. Google ScholarDigital Library
    2. Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C. 2000. Image inpainting. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH ’00, 417–424. Google ScholarDigital Library
    3. Bousseau, A., Paris, S., and Durand, F. 2009. User-assisted intrinsic images. ACM Trans. Graph. 28 (December), 130:1–130:10. Google ScholarDigital Library
    4. Clark, R., 2010. Crazybump. http://www.crazybump.com/.Google Scholar
    5. Dischler, J.-M., Maritaud, K., and Ghazanfarpour, D. 2002. Coherent bump map recovery from a single texture image. In Graphics Interface, 201–208.Google Scholar
    6. Durou, J., Falcone, M., and Sagona, M. 2008. Numerical methods for shape-from-shading: A new survey with benchmarks. Computer Vision and Image Understanding 109, 1, 22–43. Google ScholarDigital Library
    7. Fang, H., and Hart, J. C. 2004. Textureshop: texture synthesis as a photograph editing tool. In ACM SIGGRAPH 2004 Papers, ACM, New York, NY, USA, SIGGRAPH ’04, 354–359. Google ScholarDigital Library
    8. Fattal, R., Agrawala, M., and Rusinkiewicz, S. 2007. Multiscale shape and detail enhancement from multi-light image collections. In ACM SIGGRAPH 2007 papers, ACM, New York, NY, USA, SIGGRAPH ’07. Google ScholarDigital Library
    9. Gilet, G., and Dischler, J.-M. 2010. An image-based approach for stochastic volumetric and procedural details. Comput. Graph. Forum 29, 4, 1411–1419. Google ScholarDigital Library
    10. Glencross, M., Ward, G. J., Melendez, F., Jay, C., Liu, J., and Hubbold, R. 2008. A perceptually validated model for surface depth hallucination. ACM Trans. Graph. 27 (August), 59:1–59:8. Google ScholarDigital Library
    11. Goldman, D., Curless, B., Hertzmann, A., and Seitz, S. 2010. Shape and spatially-varying brdfs from photometric stereo. Pattern Analysis and Machine Intelligence, IEEE Transactions on 32, 6 (june), 1060–1071. Google ScholarDigital Library
    12. Grosse, R., Johnson, M., Adelson, E., and Freeman, W. 2009. Ground truth dataset and baseline evaluations for intrinsic image algorithms. In Computer Vision, 2009 IEEE 12th International Conference on, 2335–2342.Google Scholar
    13. Horn, B. K. P., and Brooks, M. J. 1989. Shape From Shading. The MIT Press. Google ScholarDigital Library
    14. Horn, B. K. P. 1986. Robot Vision (MIT Electrical Engineering and Computer Science), mit press ed ed. The MIT Press, March. Google ScholarDigital Library
    15. Khan, E. A., Reinhard, E., Fleming, R. W., and Bülthoff, H. H. 2006. Image-based material editing. ACM Trans. Graph. 25 (July), 654–663. Google ScholarDigital Library
    16. Kimmel, R., Elad, M., Shaked, D., Keshet, R., and Sobel, I. 2003. A variational framework for retinex. vol. 52, 7–23. Google ScholarDigital Library
    17. Oh, B. M., Chen, M., Dorsey, J., and Durand, F. 2001. Image-based modeling and photo editing. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH ’01, 433–442. Google ScholarDigital Library
    18. Shen, L., Tan, P., and Lin, S. 2008. Intrinsic image decomposition with non-local texture cues. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, 1–7.Google Scholar
    19. Shepard, D. 1968. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference, ACM, New York, NY, USA, ACM ’68, 517–524. Google ScholarDigital Library
    20. Tappen, M. F., Adelson, E. H., and Freeman, W. T. 2006. Estimating intrinsic component images using non-linear regression. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 2, 1992–1999. Google ScholarDigital Library
    21. Wang, X., Wang, L., Liu, L., Hu, S., and Guo, B. 2003. Interactive modeling of tree bark. Computer Graphics and Applications, Pacific Conference on 0, 83. Google ScholarDigital Library
    22. Weyrich, T., Lawrence, J., Lensch, H. P. A., Rusinkiewicz, S., and Zickler, T. 2009. Principles of appearance acquisition and representation. Foundations and Trends in Computer Graphics and Vision 4, 2, 75–191. Google ScholarDigital Library
    23. Wu, T.-P., Sun, J., Tang, C.-K., and Shum, H.-Y. 2008. Interactive normal reconstruction from a single image. ACM Trans. Graph. 27, 5, 1–9. Google ScholarDigital Library
    24. Xu, K., Li, Y., Ju, T., Hu, S.-M., and Liu, T.-Q. 2009. Efficient affinity-based edit propagation using k-d tree. ACM Transactions on Graphics 28, 5, 118:1–118:6. Google ScholarDigital Library
    25. Xue, S., Wang, J., Tong, X., Dai, Q., and Guo, B. 2008. Image-based material weathering. Comput. Graph. Forum 27, 2, 617–626.Google ScholarCross Ref
    26. Zelinka, S., Fang, H., Garland, M., and Hart, J. C. 2005. Interactive material replacement in photographs. In Proceedings of Graphics Interface 2005, Canadian Human-Computer Communications Society, School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, GI ’05, 227–232. Google ScholarDigital Library
    27. Zhang, R., Tsai, P.-S., Cryer, J. E., and Shah, M. 1999. Shape from shading: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 690–706. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org