“Animation of plant development” by Prusinkiewicz, Hammel and Mjolsness

  • ©

Conference:


Type(s):


Title:

    Animation of plant development

Presenter(s)/Author(s):



Abstract:


    This paper introduces a combined discrete/continuous model of
    plant development that integrates L-system-style productions and
    differential equations. The model is suitable for animating simulated developmental processes in a manner resembling time-lapse
    photography. The proposed technique is illustrated using several
    developmental models, including the flowering plants Campanula
    rapunculoides, Lychnis coronaria , and Hieracium umbellatum.

References:


    1. M. Aono and T. L. Kunii. Botanical tree image generation. IEEE Computer Graphics andApplications , 4(5): 10-34, 1984.
    2. R. Barzel. Physically-based modeling for computer graphics — a structured approach. Academic Press, Boston, 1992.
    3. C. G. de Koster and A. Lindenmayer. Discrete and continuous models for heterocyst differentiation in growing filaments of blue-green bacteria. Acta Biotheoretica, 36:249-273, 1987.
    4. E de Reffye, C. Edelin, J. Frangon, M. Jaeger, and C. Puech. Plant models faithful to botanical structure and development. Proceedings of SIGGRAPH ’88 (Atlanta, Georgia, August 1- 5, 1988), in Computer Graphics 22, 4 (August 1988), pages 151-158, ACM SIGGRAPH, New York, 1988.
    5. L. Edelstein-Keshet. Mathematical models in biology. Random House, New York, 1988.
    6. D.A. Fahrland. Combined discrete event-continuous systems simulation. Simulation, 14(2):61-72, 1970.
    7. K. W. Fleischer and A. H. Barr. A simulation testbed for the study of multicellular development: Multiple mechanisms of morphogenesis. To appear in Artificial Life III, Addison- Wesley, Redwood City, 1993.
    8. J.D. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer graphics: Principles and practice . Addison-Wesley, Reading, 1990.
    9. F. D. Fracchia, E Prusinkiewicz, and M. J. M. de Boer. Animation of the development of multicellular structures. In N. Magnenat-Thalmann and D. Thalmann, editors, Computer Animation ’90, pages 3-18, Tokyo, 1990. Springer-Verlag.
    10. J. Frangon. Sur la mod61isation de l’architecture et du d6veloppement des v6g6taux. In C. Edelin, editor, L’Arbre. Biologie et D~veloppement. Naturalia Monspeliensia, 1991. No_ hors s6rie.
    11. N. Greene. Organic architecture. SIGGRAPH Video Review 38, segment 16, ACM SIGGRAPH, New York, 1988.
    12. N. Greene. Voxel space automata: Modeling with stochastic growth processes in voxel space. Proceedings of SIG- GRAPH ’89 (Boston, Mass., July 31-August 4, 1989), in Computer Graphics 23, 4 (August 1989), pages 175-184, ACM SIGGRAPH, New York, 1989.
    13. J.S. Hanan. Parametric L-systems and their application to the modelling and visualization of plants. PhD thesis, University of Regina, June 1992.
    14. J. M. Janssen and A. Lindenmayer. Models for the control of branch positions and flowering sequences of capitula in Mycelis muralis (L.) Dumont (Compositae). New Phytologist, 105:191-220, 1987.
    15. W. Kreutzer. System simulation: Programming styles and languages. Addison-Wesley, Sydney, 1986.
    16. A. Lindenmayer. Mathematical models for cellular interaction in development, Parts I and II. Journal ofTheoreticalBiology, 18:280-315, 1968.
    17. A. Lindenmayer and H. Jtirgensen. Grammars of development: Discrete-state models for growth, differentiation and gene expression in modular organisms. In G. Rozenberg and A. Salomaa, editors, Lindenmayer systems: Impacts on theoretical computer science, computer graphics, and developmental biology, pages 3-21. Springer-Verlag, Berlin, 1992.
    18. B. B. Mandelbrot. The fractal geometry of nature. W. H. Freeman, San Francisco, 1982.
    19. G. S. E Miller. Natural phenomena: My first tree. Siggraph 1988 Film and Video Show.
    20. G. J. Mitchison and M. Wilcox. Rules governing cell division in Anabaena. Nature, 239:110-111, 1972.
    21. E. Mjolsness, D. H. Sharp, and J. Reinitz. A connectionist model of development. Journal of Theoretical Biology, 152(4):429-454, 1991.
    22. H. Noser, D. Thalmann, and R. Turner. Animation based on the interaction of L-systems with vector force fields. In T. L. Kunii, editor, Visual computing- integrating computer graphics with computervision, pages 747-761. Springer-Verlag, Tokyo, 1992.
    23. E Prusinkiewicz. Graphical applications of L-systems. In Proceedings of Graphics Intelface ‘ 86I Vision Intelface ‘ 86, pages 247-253, 1986.
    24. E Prusinkiewicz, M. Hammel, and J. Hanan. Lychnis coronaria. QuickTime movie included in the Virtual Museum CD- ROM, Apple Computer, Cupertino, 1992.
    25. E Prusinkiewicz and J. Hanan. Visualization of botanical structures and processes using parametric L-systems. In D. Thaimann, editor, Scientific Visualization and Graphics Simulation, pages 183-201. J. Wiley & Sons, Chichester, 1990.
    26. E Prusinkiewicz and J. Hanan. L-systems: From formalism to programming languages. In G. Rozenberg and A. Salomaa, editors, Lindenmayer systems: Impacts on theoretical computer science, computer graphics, and developmental biology, pages 193-211. Springer-Verlag, Berlin, 1992.
    27. E Prusinkiewicz and A. Lindenmayer. The algorithmic beauty ofplants. Springer-Verlag, New York, 1990. With J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.
    28. E Prusinkiewicz, A. Lindenmayer, and J. Hanan. Developmental models of herbaceous plants for computer imagery purposes. Proceedings of SIGGRAPH ’88 (Atlanta, Georgia, August 1-5, 1988), in Computer Graphics 22, 4 (August 1988), pages 141-150, ACM SIGGRAPH, New York, 1988.
    29. L. E Shampine, I. Gladwell, and R. W. Brankin. Reliable solution of special event location problems for ODEs. ACM Transactions on Mathematical Software, 17, No. 1:11-25, March 1991.
    30. K. Sims. Panspermia. SIGGRAPH Video Review, ACM SIGGRAPH, New York, 1990.
    31. A. R. Smith. Plants, fractals, and formal languages. Proceedings of SIGGRAPH ’84 (Minneapolis, Minnesota, July 22-27, 1984) in Computer Graphics, 18, 3 (July 1984), pages 1-10, ACM SIGGRAPH, New York, 1984.


ACM Digital Library Publication:



Overview Page: