“Animating human lower limbs using contact-invariant optimization” – ACM SIGGRAPH HISTORY ARCHIVES

“Animating human lower limbs using contact-invariant optimization”

  • 2013 SA Technical Papers_Mordatch_Animating Human Lower Limbs Using Contact-Invariant Optimization.jpg

Conference:


Type(s):


Title:

    Animating human lower limbs using contact-invariant optimization

Session/Category Title:   Modeling Humans


Presenter(s)/Author(s):



Abstract:


    We present a trajectory optimization approach to animating human activities that are driven by the lower body. Our approach is based on contact-invariant optimization. We develop a simplified and generalized formulation of contact-invariant optimization that enables continuous optimization over contact timings. This formulation is applied to a fully physical humanoid model whose lower limbs are actuated by musculotendon units. Our approach does not rely on prior motion data or on task-specific controllers. Motion is synthesized from first principles, given only a detailed physical model of the body and spacetime constraints. We demonstrate the approach on a variety of activities, such as walking, running, jumping, and kicking. Our approach produces walking motions that quantitatively match ground-truth data, and predicts aspects of human gait initiation, incline walking, and locomotion in reduced gravity.

References:


    1. Al Borno, M., de Lasa, M., and Hertzmann, A. 2013. Trajectory optimization for full-body movements with complex contacts. IEEE Trans. Vis. Comput. Graph. 19, 8.
    2. Alexander, R. M. 2003. Principles of Animal Locomotion. Princeton University Press.
    3. An, K. N., Takahashi, K., Harrigan, T. P., and Chao, E. Y. 1984. Determination of muscle orientations and moment arms. Journal of Biomechanical Engineering 106, 3.
    4. Anderson, F. C., and Pandy, M. G. 1999. A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods in Biomechanics and Biomedical Engineering 2, 3.
    5. Anderson, F. C., and Pandy, M. G. 2001. Dynamic optimization of human walking. J. Biomech. Eng. 123, 5.
    6. Anderson, F. C. 1999. A dynamic optimization solution for a complete cycle of normal gait. PhD thesis, U. of Texas at Austin.
    7. Cavagna, G. A., Willems, P. A., and Heglund, N. C. 1998. Walking on Mars. Nature 393, 6686.
    8. Cohen, M. F. 1992. Interactive spacetime control for animation. In Proc. SIGGRAPH.
    9. Coros, S., Beaudoin, P., and van de Panne, M. 2010. Generalized biped walking control. ACM Trans. Graph. 29, 4.
    10. de Lasa, M., Mordatch, I., and Hertzmann, A. 2010. Feature-based locomotion controllers. ACM Trans. Graph. 29, 4.
    11. Delp, S. L., Loan, P., Hoy, M. G., Zajac, F. E., Topp, E. L., and Rosen, J. M. 1990. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering 37, 8.
    12. Elble, R. J., Moody, C., Leffler, K., and Sinha, R. 1994. The initiation of normal walking. Movement Disorders 9, 2.
    13. Erez, T., and Todorov, E. 2012. Trajectory optimization for domains with contacts using inverse dynamics. In Proc. IROS.
    14. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proc. SIGGRAPH.
    15. Fang, A. C., and Pollard, N. 2003. Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22, 3.
    16. Geyer, H., and Herr, H. 2010. A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18, 3.
    17. Harris, C. M., and Wolpert, D. M. 1998. Signal-dependent noise determines motor planning. Nature 394.
    18. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O’Brien, J. F. 1995. Animating human athletics. In Proc. SIGGRAPH.
    19. Lay, A. N., Hass, C. J., and Gregor, R. J. 2006. The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis. Journal of Biomechanics 39.
    20. Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4.
    21. Liu, C. K., and Popović, Z. 2002. Synthesis of complex dynamic character motion from simple animations. ACM Trans. Graph. 21, 3.
    22. Liu, C. K., Hertzmann, A., and Popović, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graph. 24, 3.
    23. Margaria, R., and Cavagna, G. A. 1964. Human locomotion in subgravity. Aerospace Medicine 35.
    24. Martins, J. R. R. A., Sturdza, P., and Alonso, J. J. 2003. The complex-step derivative approximation. ACM Trans. Math. Softw. 29, 3.
    25. Millard, M., and Delp, S. L. 2012. A computationally efficient muscle model. In ASME Summer Bioeng. Conf.
    26. Millard, M., Uchida, T., Seth, A., and Delp, S. L. 2013. Flexing computational muscle: Modeling and simulation of musculotendon dynamics. Journal of Biomech. Eng. 135.
    27. Mordatch, I., Popović, Z., and Todorov, E. 2012. Contact-invariant optimization for hand manipulation. In Proc. SCA.
    28. Mordatch, I., Todorov, E., and Popović, Z. 2012. Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. 31, 4.
    29. Perry, J., and Burnfield, J. 2010. Gait Analysis: Normal and Pathological Function. Slack Incorporated.
    30. Popović, Z., and Witkin, A. 1999. Physically based motion transformation. In Proc. SIGGRAPH.
    31. Safonova, A., Hodgins, J. K., and Pollard, N. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23, 3.
    32. Srinivasan, M., and Ruina, A. 2006. Computer optimization of a minimal biped model discovers walking and running. Nature 439.
    33. Sulejmanpašić, A., and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Trans. Graph. 24, 1.
    34. Tassa, Y., and Todorov, E. 2010. Stochastic complementarity for local control of discontinuous dynamics. In Proc. RSS.
    35. Todorov, E., Erez, T., and Tassa, Y. 2012. MuJoCo: A physics engine for model-based control. In Proc. IROS.
    36. Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. ACM Trans. Graph. 28, 3.
    37. Wang, J. M., Hamner, S. R., Delp, S. L., and Koltun, V. 2012. Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Trans. Graph. 31, 4.
    38. Witkin, A. P., and Kass, M. 1988. Spacetime constraints. In Proc. SIGGRAPH.
    39. Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple biped locomotion control. ACM Trans. Graph. 26, 3.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org