“An extended cut-cell method for sub-grid liquids tracking with surface tension” by Chen, Meier, Solenthaler and Azevedo – ACM SIGGRAPH HISTORY ARCHIVES

“An extended cut-cell method for sub-grid liquids tracking with surface tension” by Chen, Meier, Solenthaler and Azevedo

  • 2020 SA Technical Papers_Chen_An extended cut-cell method for sub-grid liquids tracking with surface tension

Conference:


Type(s):


Title:

    An extended cut-cell method for sub-grid liquids tracking with surface tension

Session/Category Title:   Animation: Fluid


Presenter(s)/Author(s):



Abstract:


    Simulating liquid phenomena utilizing Eulerian frameworks is challenging, since highly energetic flows often induce severe topological changes, creating thin and complex liquid surfaces. Thus, capturing structures that are small relative to the grid size become intractable, since continually increasing the resolution will scale sub-optimally due to the pressure projection step. Previous methods successfully relied on using higher resolution grids for tracking the liquid surface implicitly; however this technique comes with drawbacks. The mismatch of pressure samples and surface degrees of freedom will cause artifacts such as hanging blobs and permanent kinks at the liquid-air interface. In this paper, we propose an extended cut-cell method for handling liquid structures that are smaller than a grid cell. At the core of our method is a novel iso-surface Poisson Solver, which converges with second-order accuracy for pressure values while maintaining attractive discretization properties such as symmetric positive definiteness. Additionally, we extend the iso-surface assumption to be also compatible with surface tension forces. Our results show that the proposed method provides a novel framework for handling arbitrarily small splashes that can also correctly interact with objects embodied by complex geometries.

References:


    1. Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty, and Eftychios Sifakis. 2017. Power diagrams and sparse paged grids for high resolution adaptive liquids. ACM Transactions on Graphics 36, 4 (jul 2017), 1–12. Google ScholarDigital Library
    2. Ryoichi Ando, N. Thurey, and R. Tsuruno. 2012. Preserving Fluid Sheets with Adaptively Sampled Anisotropic Particles. IEEE Transactions on Visualization and Computer Graphics 18, 8 (aug 2012), 1202–1214. Google ScholarDigital Library
    3. Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Transactions on Graphics 32, 4 (jul 2013), 1. Google ScholarDigital Library
    4. Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2015. A Dimension-Reduced Pressure Solver for Liquid Simulations. Comput. Graph. Forum 34, 2 (May 2015), 473–480. Google ScholarDigital Library
    5. Vinicius C Azevedo, Christopher Batty, and Manuel M Oliveira. 2016. Preserving Geometry and Topology for Fluid Flows with Thin Obstacles and Narrow Gaps. ACM Trans. Graph. 35, 4 (2016), 97:1–97:12. Google ScholarDigital Library
    6. Adam W. Bargteil, Tolga G. Goktekin, James F. O’brien, and John A. Strain. 2006. A semi-Lagrangian contouring method for fluid simulation. ACM Transactions on Graphics 25, 1 (jan 2006), 19–38. Google ScholarDigital Library
    7. Christopher Batty. 2017. A cell-centred finite volume method for the Poisson problem on non-graded quadtrees with second order accurate gradients. J. Comput. Phys. 331 (feb 2017), 49–72. Google ScholarDigital Library
    8. Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Transactions on Graphics 26, 3 (jul 2007), 100. Google ScholarDigital Library
    9. Christopher Batty and Ben Houston. 2011. A Simple Finite Volume Method for Adaptive Viscous Liquids. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’11). ACM, New York, NY, USA, 111–118. Google ScholarDigital Library
    10. Christopher Batty, Andres Uribe, Basile Audoly, and Eitan Grinspun. 2012. Discrete viscous sheets. ACM Transactions on Graphics 31, 4 (jul 2012), 1–7. Google ScholarDigital Library
    11. Christopher Batty, Stefan Xenos, and Ben Houston. 2010. Tetrahedral Embedded Boundary Methods for Accurate and Flexible Adaptive Fluids. Computer Graphics Forum 29, 2 (may 2010), 695–704. Google ScholarCross Ref
    12. Jacob Bedrossian, James H. [von Brecht], Siwei Zhu, Eftychios Sifakis, and Joseph M. Teran. 2010. A second order virtual node method for elliptic problems with interfaces and irregular domains. J. Comput. Phys. 229, 18 (2010), 6405 — 6426. Google ScholarDigital Library
    13. Morten Bojsen-Hansen and Chris Wojtan. 2013. Liquid surface tracking with error compensation. ACM Transactions on Graphics 32, 4 (jul 2013), 1. Google ScholarDigital Library
    14. Tyson Brochu, Christopher Batty, and Robert Bridson. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Transactions on Graphics 29, 4 (jul 2010), 1. Google ScholarDigital Library
    15. Nuttapong Chentanez, Bryan E Feldman, François Labelle, James F O’Brien, James F O’Brien, and Jonathan R Shewchuk. 2007. Liquid Simulation on Lattice-based Tetrahedral Meshes. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’07). Eurographics Association, Goslar Germany, Germany, 219–228. http://dl.acm.org/citation.cfm?id=1272690.1272720Google ScholarDigital Library
    16. Paul W. Cleary, Soon Hyoung Pyo, Mahesh Prakash, and Bon Ki Koo. 2007. Bubbling and frothing liquids. ACM Transactions on Graphics 26, 3 (jul 2007). Google ScholarDigital Library
    17. Jonathan M. Cohen and M. Jeroen Molemaker. 2004. Practical simulation of surface tension flows. In ACM SIGGRAPH 2004 Sketches on – SIGGRAPH ’04. ACM Press, New York, New York, USA, 70. Google ScholarDigital Library
    18. Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double Bubbles sans Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams. ACM Trans. Graph. 34, 4 (jul 2015). Google ScholarDigital Library
    19. Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016. Surface-Only Liquids. ACM Trans. Graph. 35, 4 (jul 2016). Google ScholarDigital Library
    20. Essex Edwards and Robert Bridson. 2014. Detailed water with coarse grids. ACM Transactions on Graphics 33, 4 (jul 2014), 1–9. Google ScholarDigital Library
    21. R. Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013. Chimera grids for water simulation. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation – SCA ’13. ACM Press, New York, New York, USA, 85. Google ScholarDigital Library
    22. Douglas Enright, Stephen Marschner, and Ronald Fedkiw. 2002. Animation and rendering of complex water surfaces. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques – SIGGRAPH ’02. ACM Press, New York, New York, USA, 736. Google ScholarDigital Library
    23. Ronald P Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher. 1999. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method). J. Comput. Phys. 152, 2 (jul 1999), 457–492. Google ScholarDigital Library
    24. Nick Foster and Ronald Fedkiw. 2001. Practical animation of liquids. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques – SIGGRAPH ’01. ACM Press, New York, New York, USA, 23–30. Google ScholarDigital Library
    25. Nick Foster and Dimitri Metaxas. 1996. Realistic Animation of Liquids. Graphical Models and Image Processing 58, 5 (sep 1996), 471–483. Google ScholarDigital Library
    26. Ben Frost, Alexey Stomakhin, and Hiroaki Narita. 2017. Moana. In ACM SIGGRAPH 2017 Talks on – SIGGRAPH ’17. ACM Press, New York, New York, USA, 1–2. Google ScholarDigital Library
    27. Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A Polynomial Particle-in-Cell Method. ACM Trans. Graph. 36, 6, Article 222 (Nov. 2017), 12 pages. Google ScholarDigital Library
    28. Tolga G Goktekin, Adam W Bargteil, and James F O’Brien. 2004. A Method for Animating Viscoelastic Fluids. ACM Transactions on Graphics (Proc. of ACM SIGGRAPH 2004) 23, 3 (2004), 463–468. http://graphics.cs.berkeley.edu/papers/Goktekin-AMF-2004-08/Google ScholarDigital Library
    29. Ryan Goldade and Christopher Batty. 2017. Constraint Bubbles: Adding Efficient Zero-Density Bubbles to Incompressible Free Surface Flow. (11 2017).Google Scholar
    30. Ryan Goldade, Christopher Batty, and Chris Wojtan. 2016. A Practical Method for High-Resolution Embedded Liquid Surfaces. Computer Graphics Forum 35, 2 (may 2016), 233–242. Google ScholarCross Ref
    31. Ryan Goldade, Yipeng Wang, Mridul Aanjaneya, and Christopher Batty. 2019. An adaptive variational finite difference framework for efficient symmetric octree viscosity. ACM Transactions on Graphics 38, 4 (jul 2019), 1–14. Google ScholarDigital Library
    32. Francis H Harlow and J Eddie Welch. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The physics of fluids 8, 12 (1965), 2182–2189.Google Scholar
    33. Jeffrey Lee Hellrung, Luming Wang, Eftychios Sifakis, and Joseph M. Teran. 2012. A Second Order Virtual Node Method for Elliptic Problems with Interfaces and Irregular Domains in Three Dimensions. J. Comput. Phys. 231, 4 (Feb. 2012), 2015–2048. Google ScholarDigital Library
    34. Nambin Heo and Hyeong-Seok Ko. 2010. Detail-preserving fully-Eulerian interface tracking framework. ACM Transactions on Graphics 29, 6 (dec 2010), 1. Google ScholarDigital Library
    35. Jeong-Mo Hong and Chang-Hun Kim. 2005. Discontinuous fluids. ACM Transactions on Graphics 24, 3 (jul 2005), 915. Google ScholarDigital Library
    36. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Transactions on Graphics 34, 4 (jul 2015), 51:1–51:10. Google ScholarDigital Library
    37. Hans Johansen and Phillip Colella. 1998. A Cartesian Grid Embedded Boundary Method for Poisson’s Equation on Irregular Domains. J. Comput. Phys. 147, 1 (nov 1998), 60–85. Google ScholarDigital Library
    38. Myungjoo Kang, Ronald P. Fedkiw, and Xu-Dong Liu. 2000. A Boundary Condition Capturing Method for Multiphase Incompressible Flow. Journal of Scientific Computing 15, 3 (2000), 323–360. Google ScholarDigital Library
    39. Byungmoon Kim, Yingjie Liu, Ignacio Llamas, Xiangmin Jiao, and Jarek Rossignac. 2007. Simulation of bubbles in foam with the volume control method. ACM Transactions on Graphics 26, 3 (jul 2007), 98. Google ScholarDigital Library
    40. Doyub Kim, Oh-young Song, and Hyeong-Seok Ko. 2009. Stretching and wiggling liquids. ACM Transactions on Graphics 28, 5 (dec 2009), 1. Google ScholarDigital Library
    41. Doyub Kim, Oh-young Song, and Hyeong-Seok Ko. 2010. A Practical Simulation of Dispersed Bubble Flow. ACM Trans. Graph. 29, 4 (jul 2010). Google ScholarDigital Library
    42. Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O’Brien. 2006. Fluid animation with dynamic meshes. ACM Transactions on Graphics 25, 3 (jul 2006), 820. Google ScholarDigital Library
    43. Torsten Langer, Alexander Belyaev, and Hans-Peter Seidel. 2006. Spherical Barycentric Coordinates. In Symposium on Geometry Processing, Alla Sheffer and Konrad Polthier (Eds.). The Eurographics Association. Google ScholarCross Ref
    44. Minjae Lee, David Hyde, Kevin Li, and Ronald Fedkiw. 2019. A Robust Volume Conserving Method for Character-Water Interaction. (feb 2019). arXiv:1902.00801 http://arxiv.org/abs/1902.00801Google Scholar
    45. Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water and smoke with an octree data structure. ACM Transactions on Graphics 23, 3 (aug 2004), 457. Google ScholarDigital Library
    46. M K Misztal, K Erleben, A Bargteil, J Fursund, B Bunch Christensen, J A Bærentzen, and R Bridson. 2012. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’12). Eurographics Association, Goslar Germany, Germany, 97–106. http://dl.acm.org/citation.cfm?id=2422356.2422372Google Scholar
    47. Neil Molino, Zhaosheng Bao, and Ron Fedkiw. 2004. A Virtual Node Algorithm for Changing Mesh Topology during Simulation. ACM Trans. Graph. 23, 3 (Aug. 2004), 385–392. Google ScholarDigital Library
    48. Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-Based Fluid Simulation for Interactive Applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’03). Eurographics Association, Goslar, DEU, 154–159.Google ScholarDigital Library
    49. Rahul Narain, Tobias Pfaff, and James F. O’Brien. 2013. Folding and crumpling adaptive sheets. ACM Transactions on Graphics 32, 4 (jul 2013), 1. Google ScholarDigital Library
    50. Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Transactions on Graphics 31, 6 (nov 2012), 1. Google ScholarDigital Library
    51. Matthieu Nesme, Paul G. Kry, Lenka Jeřábková, and François Faure. 2009. Preserving topology and elasticity for embedded deformable models. In ACM SIGGRAPH 2009 papers on – SIGGRAPH ’09. ACM Press, New York, New York, USA, 1. Google ScholarDigital Library
    52. Yen Ting Ng, Chohong Min, and Frédéric Gibou. 2009. An Efficient Fluid-solid Coupling Algorithm for Single-phase Flows. J. Comput. Phys. 228, 23 (2009), 8807–8829. Google ScholarDigital Library
    53. N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon, and R. Fedkiw. 2004. Directable photorealistic liquids. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation – SCA ’04. ACM Press, New York, New York, USA, 193. Google ScholarDigital Library
    54. Peter Schwartz, Michael Barad, Phillip Colella, and Terry Ligocki. 2006. A Cartesian grid embedded boundary method for the heat equation and Poisson’s equation in three dimensions. J. Comput. Phys. 211, 2 (2006), 531 — 550. Google ScholarDigital Library
    55. Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid. ACM Transactions on Graphics 33, 6 (nov 2014), 1–12. Google ScholarDigital Library
    56. Lin Shi and Yizhou Yu. 2004. Visual smoke simulation with adaptive octree refinement.Google Scholar
    57. Eftychios Sifakis, Tamar Shinar, Geoffrey Irving, and Ronald Fedkiw. 2007. Hybrid Simulation of Deformable Solids. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’07). Eurographics Association, Goslar Germany, Germany, 81–90. http://dl.acm.org/citation.cfm?id=1272690.1272702Google ScholarDigital Library
    58. Alexey Stomakhin and Andrew Selle. 2017. Fluxed animated boundary method. ACM Transactions on Graphics 36, 4 (jul 2017), 1–8. Google ScholarDigital Library
    59. Mark Sussman and Mitsuhiro Ohta. 2009. A Stable and Efficient Method for Treating Surface Tension in Incompressible Two-Phase Flow. SIAM Journal on Scientific Computing 31, 4 (jan 2009), 2447–2471. Google ScholarDigital Library
    60. Tetsuya Takahashi and Ming C. Lin. 2019. A Geometrically Consistent Viscous Fluid Solver with Two-Way Fluid-Solid Coupling. Computer Graphics Forum 38, 2 (may 2019), 49–58. Google ScholarCross Ref
    61. Michael Tao, Christopher Batty, Eugene Fiume, and David I. W. Levin. 2019. Mandoline. ACM Transactions on Graphics 38, 6 (nov 2019), 1–17. Google ScholarDigital Library
    62. J. Teran, E. Sifakis, S.S. Blemker, V. Ng-Thow-Hing, C. Lau, and R. Fedkiw. 2005. Creating and Simulating Skeletal Muscle from the Visible Human Data Set. IEEE Transactions on Visualization and Computer Graphics 11, 3 (may 2005), 317–328. Google ScholarDigital Library
    63. Nils Thürey, Chris Wojtan, Markus Gross, and Greg Turk. 2010. A multiscale approach to mesh-based surface tension flows. ACM Transactions on Graphics 29, 4 (jul 2010), 1. Google ScholarDigital Library
    64. Nils Thürey, Chris Wojtan, Markus Gross, and Greg Turk. 2010. A Multiscale Approach to Mesh-Based Surface Tension Flows. ACM Trans. Graph. 29, 4, Article Article 48 (July 2010), 10 pages. Google ScholarDigital Library
    65. Huamin Wang, Peter J. Mucha, and Greg Turk. 2005. Water drops on surfaces. ACM Transactions on Graphics 24, 3 (jul 2005), 921. Google ScholarDigital Library
    66. Martin Wicke, Daniel Ritchie, Bryan M. Klingner, Sebastian Burke, Jonathan R. Shewchuk, and James F. O’Brien. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Transactions on Graphics 29, 4 (jul 2010), 1. Google ScholarDigital Library
    67. Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2009. Deforming meshes that split and merge. ACM Transactions on Graphics 28, 3 (jul 2009), 1. Google ScholarDigital Library
    68. Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2010. Physics-inspired topology changes for thin fluid features. In ACM SIGGRAPH 2010 papers on – SIGGRAPH ’10. ACM Press, New York, New York, USA, 1. Google ScholarDigital Library
    69. Chris Wojtan and Greg Turk. 2008. Fast viscoelastic behavior with thin features. In ACM SIGGRAPH 2008 papers on – SIGGRAPH ’08. ACM Press, New York, New York, USA, 1. Google ScholarDigital Library
    70. Omar Zarifi and Christopher Batty. 2017. A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodies. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation – SCA ’17. ACM Press, New York, New York, USA, 1–11. Google ScholarDigital Library
    71. Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. 1997. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Software 23, 4 (dec 1997), 550–560. Google ScholarDigital Library
    72. Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions on Graphics 24, 3 (jul 2005), 965. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org