“Adaptive wavelet rendering” – ACM SIGGRAPH HISTORY ARCHIVES

“Adaptive wavelet rendering”

  • ©

Conference:


Type(s):


Title:

    Adaptive wavelet rendering

Session/Category Title:   Global illumination


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Effects such as depth of field, area lighting, antialiasing and global illumination require evaluating a complex high-dimensional integral at each pixel of an image. We develop a new adaptive rendering algorithm that greatly reduces the number of samples needed for Monte Carlo integration. Our method renders directly into an image-space wavelet basis. First, we adaptively distribute Monte Carlo samples to reduce the variance of the wavelet basis’ scale coefficients, while using the wavelet coefficients to find edges. Working in wavelets, rather than pixels, allows us to sample not only image-space edges but also other features that are smooth in the image plane but have high variance in other integral dimensions. In the second stage, we reconstruct the image from these samples by using a suitable wavelet approximation. We achieve this by subtracting an estimate of the error in each wavelet coefficient from its magnitude, effectively producing the smoothest image consistent with the rendering samples. Our algorithm renders scenes with significantly fewer samples than basic Monte Carlo or adaptive techniques. Moreover, the method introduces minimal overhead, and can be efficiently included in an optimized ray-tracing system.

References:


    1. Bahvalov, N. S. 1959. On approximate calculation of multiple integrals. Tech. rep., Vestnik Moscow Univ.Google Scholar
    2. Bala, K., Walter, B., and Greenberg, D. P. 2003. Combining edges and points for interactive high-quality rendering. ACM TOG (SIGGRAPH 03) 22, 3, 631–640. Google ScholarDigital Library
    3. Bolin, M. R., and Meyer, G. W. 1998. A perceptually based adaptive sampling algorithm. In ACM SIGGRAPH 98, 299–310. Google ScholarDigital Library
    4. Boulos, S., Edwards, D., Lacewell, J. D., Kniss, J., Kautz, J., Shirley, P., and Wald, I. 2007. Packet-based Whitted and Distribution Ray Tracing. In Proc. Graphics Interface, 177–184. Google ScholarDigital Library
    5. Clarberg, P., Jarosz, W., Akenine-Möller, T., and Jensen, H. W. 2005. Wavelet Importance Sampling: Efficiently Evaluating Products of Complex Functions. ACM TOG (SIGGRAPH 05) 24, 3, 1166–1175. Google ScholarDigital Library
    6. Cohen, A., Daubechies, I., and Feauveau, J.-C. 1992. Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics 45, 5, 485–560.Google ScholarCross Ref
    7. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. 2005. A frequency analysis of light transport. ACM TOG (SIGGRAPH 05) 24, 3, 1115–1126. Google ScholarDigital Library
    8. Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM TOG (SIGGRAPH 09) 28, 3, 93. Google ScholarDigital Library
    9. Gortler, S. J., Schröder, P., Cohen, M. F., and Hanrahan, P. 1993. Wavelet radiosity. In ACM SIGGRAPH 93, 221–230. Google ScholarDigital Library
    10. Guo, B. 1998. Progressive radiance evaluation using directional coherence maps. In ACM SIGGRAPH 98, 255–266. Google ScholarDigital Library
    11. Haber, S. 1969. Stochastic quadrature formulas. Mathematics of Computation 23, 108, 751–764.Google Scholar
    12. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM TOG (SIGGRAPH 08) 27, 3, 33. Google ScholarDigital Library
    13. Heinrich, S., and Sindambiwe, E. 1999. Monte Carlo complexity of parametric integration. J. Complex. 15, 3, 317–341. Google ScholarDigital Library
    14. Kajiya, J. T. 1986. The rendering equation. In ACM SIGGRAPH 86, 143–150. Google ScholarDigital Library
    15. Keller, A. 2001. Hierarchical Monte Carlo image synthesis. Mathematics and Computers in Simulation 55, 1–3, 79–92. Google ScholarDigital Library
    16. Mallat, S. 1999. A Wavelet Tour of Signal Processing, Second Edition (Wavelet Analysis&Its Applications). Academic Press. Google ScholarDigital Library
    17. McCool, M. D. 1999. Anisotropic diffusion for Monte Carlo noise reduction. ACM TOG 18, 2, 171–194. Google ScholarDigital Library
    18. Meyer, M., and Anderson, J. 2006. Statistical acceleration for animated global illumination. ACM TOG (SIGGRAPH 06) 25, 3, 1075–1080. Google ScholarDigital Library
    19. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In ACM SIGGRAPH 87, 65–72. Google ScholarDigital Library
    20. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. All-frequency shadows using non-linear wavelet lighting approximation. ACM TOG (SIGGRAPH 03) 22, 3, 376–381. Google ScholarDigital Library
    21. Overbeck, R., Ramamoorthi, R., and Mark, W. R. 2008. Large ray packets for real-time Whitted ray tracing. In IEEE/EG Symp. on Interactive Ray Tracing, 41–48.Google Scholar
    22. Perona, P., and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 7, 629–639. Google ScholarDigital Library
    23. Pharr, M., and Humphreys, G. 2004. Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc. Google ScholarDigital Library
    24. Reshetov, A., Soupikov, A., and Hurley, J. 2005. Multilevel ray tracing algorithm. ACM TOG (SIGGRAPH 05) 24, 3, 1176–1185. Google ScholarDigital Library
    25. Rushmeier, H. E., and Ward, G. J. 1994. Energy preserving non-linear filters. In ACM SIGGRAPH 94, 131–138. Google ScholarDigital Library
    26. Skodras, A., Christopoulos, C., and Ebrahimi, T. 2001. The JPEG 2000 still image compression standard. IEEE Signal Processing Magazine 18, 5, 36–58.Google ScholarCross Ref
    27. Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion, F. 2009. Fourier depth of field. ACM TOG 28, 2, 18. Google ScholarDigital Library
    28. Strang, G., and Nguyen, T. 1997. Wavelets and Filter Banks. Wellesley-Cambridge Press.Google Scholar
    29. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In ICCV 98, 839. Google ScholarDigital Library
    30. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In ACM SIGGRAPH 97, 65–76. Google ScholarDigital Library
    31. Wald, I., Slusallek, P., Benthin, C., and Wagner, M. 2001. Interactive rendering with coherent ray tracing. Computer Graphics Forum (EUROGRAPHICS 01) 20, 3, 153–164.Google Scholar
    32. Walter, B., Arbree, A., Bala, K., and Greenberg, D. P. 2006. Multidimensional lightcuts. ACM TOG (SIGGRAPH 06) 25, 3, 1081–1088. Google ScholarDigital Library
    33. Whitted, T. 1980. An improved illumination model for shaded display. Commun. ACM 23, 6, 343–349. Google ScholarDigital Library
    34. Xu, R., and Pattanaik, S. N. 2005. A novel Monte Carlo noise reduction operator. IEEE Comput. Graph. Appl. 25, 2, 31–35. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org