“A radiative transfer framework for non-exponential media” – ACM SIGGRAPH HISTORY ARCHIVES

“A radiative transfer framework for non-exponential media”

  • 2018 SA Technical Papers_Bitterli_A radiative transfer framework for non-exponential media

Conference:


Type(s):


Title:

    A radiative transfer framework for non-exponential media

Session/Category Title:   Beyond light transport


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We develop a new theory of volumetric light transport for media with non-exponential free-flight distributions. Recent insights from atmospheric sciences and neutron transport demonstrate that such distributions arise in the presence of correlated scatterers, which are naturally produced by processes such as cloud condensation and fractal-pattern formation. Our theory formulates a non-exponential path integral as the result of averaging stochastic classical media, and we introduce practical models to solve the resulting averaging problem efficiently. Our theory results in a generalized path integral which allows us to handle non-exponential media using the full range of Monte Carlo rendering algorithms while enriching the range of achievable appearance. We propose parametric models for controlling the statistical correlations by leveraging work on stochastic processes, and we develop a method to combine such unresolved correlations (and the resulting non-exponential free-flight behavior) with explicitly modeled macroscopic heterogeneity. This provides a powerful authoring approach where artists can freely design the shape of the attenuation profile separately from the macroscopic heterogeneous density, while our theory provides a physically consistent interpretation in terms of a path space integral. We address important considerations for graphics including reciprocity and bidirectional rendering algorithms, all in the presence of surfaces and correlated media.

References:


    1. Michael Ashikhmin and Peter Shirley. 2000. An Anisotropic Phong BRDF Model. J. Graph. Tools 5, 2 (Feb. 2000), 25–32. Google ScholarDigital Library
    2. Michael Ashikmin, Simon Premože, and Peter Shirley. 2000. A Microfacet-based BRDF Generator. In Proc. SIGGRAPH. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 65–74. Google ScholarDigital Library
    3. Mahdi M. Bagher, John Snyder, and Derek Nowrouzezahrai. 2016. A Non-Parametric Factor Microfacet Model for Isotropic BRDFs. ACM Trans. Graph. (Proc. SIGGRAPH) 35, 5 (July 2016), 159:1–159:16. Google ScholarDigital Library
    4. Michael F. Barnsley, Robert L. Devaney, Benoit B. Mandelbrot, Heinz-Otto Peitgen, Dietmar Saupe, Richard F. Voss, Yuval Fisher, and Michael McGuire. 1988. The Science of Fractal Images (1st ed.). Springer Publishing Company, Incorporated.Google Scholar
    5. Bryan Beresford-Smith, Derek YC Chan, and D John Mitchell. 1985. The electrostatic interaction in colloidal systems with low added electrolyte. Journal of colloid and interface science 105, 1 (1985), 216–234.Google ScholarCross Ref
    6. Benedikt Bitterli. 2018. Tungsten Renderer. (2018). https://github.com/tunabrain/tungsten/.Google Scholar
    7. James F. Blinn. 1977. Models of Light Reflection for Computer Synthesized Pictures. Proc. SIGGRAPH 11, 2 (July 1977), 192–198. Google ScholarDigital Library
    8. Anatoli Borovoi. 2002. On the extinction of radiation by a homogeneous but spatially correlated random medium: comment. J. Opt. Soc. Am. A 19, 12 (Dec 2002), 2517–2520.Google ScholarCross Ref
    9. Antoine Bouthors, Fabrice Neyret, Nelson Max, Eric Bruneton, and Cyril Crassin. 2008. Interactive multiple anisotropic scattering in clouds. In Proceedings of the Symposium on Interactive 3D Graphics and Games. ACM, ACM, 173–182. Google ScholarDigital Library
    10. Thomas Camminady, Martin Frank, and Edward W. Larsen. 2017. Nonclassical Particle Transport in Heterogeneous Materials. In International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering.Google Scholar
    11. S. Chandrasekhar. 1960. Radiative Transfer. Dover Publications.Google Scholar
    12. Per H. Christensen and Wojciech Jarosz. 2016. The Path to Path-Traced Movies. Foundations and Trends in Computer Graphics and Vision 10, 2 (October 2016), 103–175. Google ScholarDigital Library
    13. W. A. Coleman. 1968. Mathematical verification of a certain Monte Carlo sampling technique and applications of the technique to radiation transport problems. Nuclear Science and Engineering 32, 1 (April 1968), 76–81.Google ScholarCross Ref
    14. Robert L. Cook and Kenneth E. Torrance. 1981. A Reflectance Model for Computer Graphics. Proc. SIGGRAPH 15, 3 (Aug. 1981), 307–316. Google ScholarDigital Library
    15. Anthony B. Davis and Alexander Marshak. 2004. Photon propagation in heterogeneous optical media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distributions. Journal of Quantitative Spectroscopy and Radiative Transfer 84, 1 (2004), 3 — 34.Google ScholarCross Ref
    16. Anthony B. Davis, Alexander Marshak, H. Gerber, and Warren J. Wiscombe. 1999. Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales. Journal of Geophysical Research: Atmospheres 104, D6 (1999), 6123–6144.Google ScholarCross Ref
    17. Anthony B. Davis and Mark B. Mineev-Weinstein. 2011. Radiation propagation in random media: From positive to negative correlations in high-frequency fluctuations. Journal of Quantitative Spectroscopy and Radiative Transfer 112, 4 (March 2011), 632–645.Google ScholarCross Ref
    18. Anthony B. Davis and Feng Xu. 2014. A Generalized Linear Transport Model for Spatially Correlated Stochastic Media. Journal of Computational and Theoretical Transport 43, 1–7 (2014), 474–514.Google ScholarCross Ref
    19. Eugene d’Eon. 2013. Rigorous asymptotic and moment-preserving diffusion approximations for generalized linear Boltzmann transport in d dimensions. CoRR abs/1312.1412 (2013). arXiv:1312.1412 http://arxiv.org/abs/1312.1412Google Scholar
    20. Eugene d’Eon. 2016. A Hitchhiker’s Guide to Multiple Scattering. Self-published. http://www.eugenedeon.com/project/a-hitchhikers-guide-to-multiple-scattering/Google Scholar
    21. Eugene d’Eon. 2018. A reciprocal formulation of non-exponential radiative transfer. 1: Sketch and motivation. (2018). arXiv:1803.03259 https://arxiv.org/abs/1803.03259Google Scholar
    22. Jonathan Dupuy, Eric Heitz, and Eugene d’Eon. 2016. Additional Progress Towards the Unification of Microfacet and Microflake Theories. In Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations (EGSR ’16). Eurographics Association, Goslar Germany, Germany, 55–63. Google ScholarDigital Library
    23. David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley. 2002. Texturing and Modeling: A Procedural Approach (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. Google ScholarDigital Library
    24. Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf Habel. 2017. Production Volume Rendering: SIGGRAPH 2017 Course. In ACM SIGGRAPH 2017 Courses (SIGGRAPH ’17). ACM, New York, NY, USA, Article 2, 79 pages. Google ScholarDigital Library
    25. Ioannis Gkioulekas, Bei Xiao, Shuang Zhao, Edward Adelson, Todd Zickler, and Kavita Bala. 2013. Uderstanding the Role of Phase Function in Translucent Appearance. ACM Trans. Graph. 32, 5, Article 131 (Oct. 2013), 12 pages. Google ScholarDigital Library
    26. Armando Gama Goicochea. 2013. A Model for the Stability of a TiO2 Dispersion. ISRN Materials Science 2013 (2013).Google Scholar
    27. David G Grier and Sven H Behrens. 2001. Interactions in colloidal suspensions. In Electrostatic effects in soft matter and biophysics. Springer, 87–116.Google Scholar
    28. Diego Gutierrez, Francisco Seron, Adolfo Muñoz, and Oscar Anson. 2008. Visualizing Underwater Ocean Optics. Computer Graphics Forum (Proc. Eurographics) 27, 2 (2008), 547–556.Google ScholarCross Ref
    29. Ralf Habel, Per H. Christensen, and Wojciech Jarosz. 2013. Classical and Improved Diffusion Theory for Subsurface Scattering. Technical Report. Disney Research Zürich.Google Scholar
    30. Eric Heitz, Jonathan Dupuy, Cyril Crassin, and Carsten Dachsbacher. 2015. The SGGX Microflake Distribution. ACM Trans. Graph. 34, 4 (July 2015), 48:1–48:11. Google ScholarDigital Library
    31. Wenzel Jakob, Adam Arbree, Jonathan T. Moon, Kavita Bala, and Steve Marschner. 2010. A Radiative Transfer Framework for Rendering Materials with Anisotropic Structure. ACM Trans. Graph. 29, 4, Article 53 (July 2010), 13 pages. Google ScholarDigital Library
    32. Safa Jamali. 2015. Rheology of Colloidal Suspensions: A Computational Study. Ph.D. Dissertation.Google Scholar
    33. Adrian Jarabo, Carlos Aliaga, and Diego Gutierrez. 2018. A Radiative Transfer Framework for Spatially-Correlated Materials. ACM Trans. Graph. (Proc. SIGGRAPH) 37, 4 (July 2018). Google ScholarDigital Library
    34. Adrian Jarabo and Victor Arellano. 2018. Bidirectional Rendering of Vector Light Transport. Computer Graphics Forum (2018), n/a-n/a. awaiting publication. Google ScholarDigital Library
    35. Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. 2001. A Practical Model for Subsurface Light Transport. In Proc. SIGGRAPH. ACM, New York, NY, USA, 511–518. Google ScholarDigital Library
    36. A. Keller, L. Fascione, M. Fajardo, I. Georgiev, P. Christensen, J. Hanika, C. Eisenacher, and G. Nichols. 2015. The Path Tracing Revolution in the Movie Industry. In ACM SIGGRAPH 2015 Courses (SIGGRAPH ’15). ACM, New York, NY, USA, Article 24, 7 pages. Google ScholarDigital Library
    37. Alexander B. Kostinski. 2001. On the extinction of radiation by a homogeneous but spatially correlated random medium. J. Opt. Soc. Am. A 18, 8 (Aug 2001), 1929–1933.Google ScholarCross Ref
    38. A. B. Kostinski and A. R. Jameson. 2000. On the Spatial Distribution of Cloud Particles. Journal of the Atmospheric Sciences 57, 7 (2000), 901–915.Google ScholarCross Ref
    39. Edward W. Larsen and Richard Vasques. 2011. A generalized linear Boltzmann equation for non-classical particle transport. Journal of Quantitative Spectroscopy and Radiative Transfer 112, 4 (2011), 619 — 631.Google ScholarCross Ref
    40. Benoit B. Mandelbrot and John W. Van Ness. 1968. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Rev. 10, 4 (1968), 422–437.Google ScholarDigital Library
    41. Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. 2003. A Data-Driven Reflectance Model. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3 (July 2003), 759–769. Google ScholarDigital Library
    42. Johannes Meng, Marios Papas, Ralf Habel, Carsten Dachsbacher, Steve Marschner, Markus Gross, and Wojciech Jarosz. 2015. Multi-scale Modeling and Rendering of Granular Materials. ACM Trans. Graph. 34, 4, Article 49 (July 2015), 13 pages. Google ScholarDigital Library
    43. Jonathan T. Moon, Bruce Walter, and Steve Marschner. 2008. Efficient Multiple Scattering in Hair Using Spherical Harmonics. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, Article 31 (Aug. 2008), 7 pages. Google ScholarDigital Library
    44. Jonathan T. Moon, Bruce Walter, and Stephen R. Marschner. 2007. Rendering Discrete Random Media Using Precomputed Scattering Solutions. In Rendering Techniques (Proc. EGSR). 231–242. Google ScholarDigital Library
    45. Thomas Müller, Marios Papas, Markus Gross, Wojciech Jarosz, and Jan Novák. 2016. Efficient Rendering of Heterogeneous Polydisperse Granular Media. ACM Trans. Graph. 35, 6, Article 168 (Nov. 2016), 14 pages. Google ScholarDigital Library
    46. Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo Methods for Volumetric Light Transport Simulation. Computer Graphics Forum (Proceedings of Eurographics – State of the Art Reports) 37, 2 (May 2018).Google ScholarCross Ref
    47. Derek Nowrouzezahrai, Jared Johnson, Andrew Selle, Dylan Lacewell, Michael Kaschalk, and Wojciech Jarosz. 2011. A Programmable System for Artistic Volumetric Lighting. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4, Article 29 (Aug. 2011). Google ScholarDigital Library
    48. Ken Perlin. 1985. An Image Synthesizer. Proc. SIGGRAPH 19, 3 (July 1985), 287–296. Google ScholarDigital Library
    49. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. Google ScholarDigital Library
    50. Bui Tuong Phong. 1975. Illumination for Computer Generated Pictures. Commun. ACM 18, 6 (June 1975), 311–317. Google ScholarDigital Library
    51. Matthias Raab, Daniel Seibert, and Alexander Keller. 2008. Unbiased global illumination with participating media. In Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, 591–606.Google Scholar
    52. Y. Rahmani. 2013. Micromechanics and rheology of hard and soft-sphere colloidal glasses. Ph.D. Dissertation.Google Scholar
    53. Raymond A Shaw, Alexander B Kostinski, and Daniel D Lanterman. 2002. Super-exponential extinction of radiation in a negatively correlated random medium. Journal of Quantitative Spectroscopy and Radiative Transfer 75, 1 (2002), 13 — 20.Google ScholarCross Ref
    54. B. Smith, J. Vasut, T. Hyde, L. Matthews, J. Reay, M. Cook, and J. Schmoke. 2004. Dusty plasma correlation function experiment. Advances in Space Research 34, 11 (2004), 2379 — 2383.Google ScholarCross Ref
    55. T Smith and J Guild. 1931. The C.I.E. colorimetric standards and their use. Transactions of the Optical Society 33, 3 (1931), 73.Google ScholarCross Ref
    56. Richard Vasques and Edward W. Larsen. 2014a. Non-classical particle transport with angular-dependent path-length distributions. I: Theory. Annals of Nuclear Energy 70, Supplement C (2014), 292 — 300.Google ScholarCross Ref
    57. Richard Vasques and Edward W. Larsen. 2014b. Non-classical particle transport with angular-dependent path-length distributions. II: Application to pebble bed reactor cores. Annals of Nuclear Energy 70, Supplement C (2014), 301 — 311.Google ScholarCross Ref
    58. Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Ph.D. Dissertation. Stanford, CA, USA. Google ScholarDigital Library
    59. Josh Wills, Sameer Agarwal, David Kriegman, and Serge Belongie. 2009. Toward a Perceptual Space for Gloss. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 4, Article 103 (Sept. 2009), 15 pages. Google ScholarDigital Library
    60. E. R. Woodcock, T. Murphy, P. J. Hemmings, and T. C. Longworth. 1965. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. In Applications of Computing Methods to Reactor Problems. Argonne National Laboratory.Google Scholar
    61. Magnus Wrenninge, Chris Kulla, and Viktor Lundqvist. 2013. Oz: The Great and Volumetric. In ACM SIGGRAPH 2013 Talks (SIGGRAPH ’13). ACM, New York, NY, USA, Article 46, 1 pages. Google ScholarDigital Library
    62. Magnus Wrenninge, Ryusuke Villemin, and Christophe Hery. 2017. Path Traced Subsurface Scattering using Anisotropic Phase Functions and Non-Exponential Free Flights. Technical Report.Google Scholar
    63. Magnus Wrenninge, Nafees Bin Zafar, Ollie Harding, Gavin Graham, Jerry Tessendorf, Victor Grant, Andrew Clinton, and Antoine Bouthors. 2011. Production Volume Rendering 2: Systems. In ACM SIGGRAPH 2011 Courses. ACM, New York, NY, USA.Google Scholar
    64. Wen Xu, Alex Nikolov, Darsh T Wasan, Alex Gonsalves, and Rajendra P Borwankar. 1998. Fat particle structure and stability of food emulsions. Journal of food science 63, 2 (1998), 183–188.Google ScholarCross Ref
    65. Shuang Zhao, Ravi Ramamoorthi, and Kavita Bala. 2014. High-order Similarity Relations in Radiative Transfer. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4, Article 104 (July 2014), 12 pages. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org