“A luminance-contrast-aware disparity model and applications” – ACM SIGGRAPH HISTORY ARCHIVES

“A luminance-contrast-aware disparity model and applications”

  • 2012 SA Technical Papers_Didyk_A Luminance Contrast Aware Disparity Model and Applications

Conference:


Type(s):


Title:

    A luminance-contrast-aware disparity model and applications

Session/Category Title:   Stereo and Displays


Presenter(s)/Author(s):



Abstract:


    Binocular disparity is one of the most important depth cues used by the human visual system. Recently developed stereo-perception models allow us to successfully manipulate disparity in order to improve viewing comfort, depth discrimination as well as stereo content compression and display. Nonetheless, all existing models neglect the substantial influence of luminance on stereo perception. Our work is the first to account for the interplay of luminance contrast (magnitude/frequency) and disparity and our model predicts the human response to complex stereo-luminance images. Besides improving existing disparity-model applications (e.g., difference metrics or compression), our approach offers new possibilities, such as joint luminance contrast and disparity manipulation or the optimization of auto-stereoscopic content. We validate our results in a user study, which also reveals the advantage of considering luminance contrast and its significant impact on disparity manipulation techniques.

References:


    1. Barten, P. G. J. 1989. The square root integral (SQRI): A new metric to describe the effect of various display parameters on perceived image quality. In Proc. SPIE, vol. 1077, 73–82.
    2. Burt, P., and Adelson, E. 1983. The Laplacian pyramid as a compact image code. IEEE Trans. Communic. 31, 4, 532–540.
    3. Burt, P., and Julesz, B. 1980. A disparity gradient limit for binocular fusion. Science 208, 4444, 615–617.
    4. Cormack, L., Stevenson, S., and Schor, C. 1991. Interocular correlation, luminance contrast and cyclopean processing. Vis Res 31, 12, 2195–2207.
    5. Cutting, J., and Vishton, P. 1995. Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In Perception of Space and Motion, Academic Press, W. Epstein and S. Rogers, Eds., 69–117.
    6. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2010. Adaptive image-space stereo view synthesis. In Proc. VMV, 299–306.
    7. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2011. A perceptual model for disparity. ACM Trans. Graph. 30, 96:1–96:10.
    8. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2012. Apparent stereo: the cornsweet illusion can enhance perceived depth. In Proc. SPIE, vol. 8291, 82910N.
    9. Filippini, H., and Banks, M. 2009. Limits of stereopsis explained by local cross-correlation. J Vision 9, 1, 8:1–8:18.
    10. Heckmann, T., and Schor, C. M. 1989. Is edge information for stereoacuity spatially channeled? Vis Res 29, 5, 593–607.
    11. Heinzle, S., Greisen, P., Gallup, D., Chen, C., Saner, D., Smolic, A., Burg, A., Matusik, W., and Gross, M. 2011. Computational stereo camera system with programmable control loop. ACM Trans. Graph. 30, 94:1–94:10.
    12. Hess, R., Kingdom, F., and Ziegler, L. 1999. On the relationship between the spatial channels for luminance and disparity processing. Vis Res 39, 3, 559–68.
    13. Howard, I. P., and Rogers, B. J. 2002. Seeing in Depth, vol. 2: Depth Perception. I. Porteous, Toronto.
    14. Jones, G., Lee, D., Holliman, N., and Ezra, D. 2001. Controlling perceived depth in stereoscopic images. In Proc. SPIE, vol. 4297, 42–53.
    15. Kingdom, F., and Simmons, D. 2000. The relationship between colour vision and stereoscopic depth perception. J Society for 3-D Broadcasting and Imaging 1, 10–19.
    16. Lambooij, M., IJsselsteijn, W., Fortuin, M., and Heynderickx, I. 2009. Visual discomfort and visual fatigue of stereoscopic displays: a review. J Imaging Science and Technology 53, 030201–14.
    17. Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., and Gross, M. 2010. Nonlinear disparity mapping for stereoscopic 3D. ACM Trans. Graph. 29, 4, 75:1–75:10.
    18. Lee, B., and Rogers, B. 1997. Disparity modulation sensitivity for narrow-band-filtered stereograms. Vis Res 37, 13, 1769–77.
    19. Lee, S., Shioiri, S., and Yaguchi, H. 2007. Stereo channels with different temporal frequency tunings. Vis Res 47, 3, 289–97.
    20. Lee, S., Eisemann, E., and Seidel, H.-P. 2009. Depth-of-field rendering with multiview synthesis. ACM Trans. Graph. (Proc. of SIGGRAPH Asia) 28, 5.
    21. Legge, G., and Gu, Y. 1989. Stereopsis and contrast. Vis Res 29, 8, 989–1004.
    22. Lubin, J. 1995. A visual discrimination model for imaging system design and development. In Vision models for target detection and recognition, World Scientific, E. Peli, Ed., 245–283.
    23. Mantiuk, R., Myszkowski, K., and Seidel, H. 2006. A perceptual framework for contrast processing of high dynamic range images. ACM Trans. Applied Perception 3, 3, 286–308.
    24. Mantiuk, R., Daly, S., and Kerofsky, L. 2008. Display adaptive tone mapping. ACM Trans. Graph. 27, 3, 68:1–68:10.
    25. Marr, D., and Poggio, T. 1979. A computational theory of human stereo vision. Proc. R. Soc. Lond. Ser. B 204, 301–28.
    26. Mather, G., and Smith, D. 2002. Blur discrimination and its relation to blur-mediated depth perception. Perception 31, 10, 1211–1220.
    27. Oskam, T., Hornung, A., Bowles, H., Mitchell, K., and Gross, M. 2011. Oscam – optimized stereoscopic camera control for interactive 3D. ACM Trans. Graph. 30, 189:1–189:8.
    28. Richards, W. 1971. Anomalous stereoscopic depth perception. JOSA 61, 3, 410–14.
    29. Rohaly, A. M., and Wilson, H. R. 1999. The effects of contrast on perceived depth and depth discrimination. Vis Res 39, 1, 9–18.
    30. Rushton, S., Mon-Williams, M., and Wann, J. P. 1994. Binocular vision in a bi-ocular world: new-generation head-mounted displays avoid causing visual deficit. Displays 15, 4, 255–260.
    31. Shibata, T., Kim, J., Hoffman, D., and Banks, M. 2011. The zone of comfort: Predicting visual discomfort with stereo displays. J Vision 11, 8, 11:1–11:29.
    32. Taubman, D. S., and Marcellin, M. W. 2001. JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic Publishers, Norwell, MA, USA.
    33. Tyler, C. W. 1975. Spatial organization of binocular disparity sensitivity. Vis Res 15, 5, 583–590.
    34. Ware, C., Gobrecht, C., and Paton, M. 1998. Dynamic adjustment of stereo display parameters. IEEE, vol. 28, 56–65.
    35. Watson, A. B., and Pelli, D. G. 1983. QUEST: a Bayesian adaptive psychometric method. Perception and Psychophysics 33, 2, 113–120.
    36. Wilson, H. 1980. A transducer function for threshold and suprathreshold human vision. Biological Cybernetics 38, 171–8.
    37. Zwicker, M., Matusik, W., Durand, F., Pfister, H., and Forlines, C. 2006. Antialiasing for automultiscopic 3D displays. In Proc. EGSR, 73–82.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org