“Efficient Graphics Representation with Differentiable Indirection” by Datta, Marshall, Nowrouzezahrai, Dong and Li – ACM SIGGRAPH HISTORY ARCHIVES

“Efficient Graphics Representation with Differentiable Indirection” by Datta, Marshall, Nowrouzezahrai, Dong and Li

  • 2023 SA_Technical_Papers_Datta_Efficient Graphics Representation with Differentiable Indirection

Conference:


Type(s):


Title:

    Efficient Graphics Representation with Differentiable Indirection

Session/Category Title:   \nabla f = ?


Presenter(s)/Author(s):



Abstract:


    We introduce differentiable indirection — a novel learned primitive that employs differentiable multi-scale lookup tables as an effective substitute for traditional compute and data operations across the graphics pipeline. We demonstrate its flexibility on a number of graphics tasks, i.e., geometric and image representation, texture mapping, shading, and radiance field representation. In all cases, differentiable indirection seamlessly integrates into existing architectures, trains rapidly, and yields both versatile and efficient results.

References:


    [1]
    Adobe. 2023. Substance-3D. https://www.adobe.com/products/substance3d/3d-assets.html

    [2]
    Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. 2020. Neural reflectance fields for appearance acquisition. arXiv preprint arXiv:2008.03824 (2020).

    [3]
    Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Barron, Ce Liu, and Hendrik Lensch. 2021a. Nerd: Neural reflectance decomposition from image collections. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 12684–12694.

    [4]
    Mark Boss, Varun Jampani, Raphael Braun, Ce Liu, Jonathan Barron, and Hendrik Lensch. 2021b. Neural-pil: Neural pre-integrated lighting for reflectance decomposition. Advances in Neural Information Processing Systems 34 (2021), 10691–10704.

    [5]
    Moshe Caine. 2016. 3D Bronze horse model. https://skfb.ly/Lz7L

    [6]
    Rohan Chabra, Jan Eric Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and Richard A. Newcombe. 2020. Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction. CoRR abs/2003.10983 (2020). arXiv:2003.10983https://arxiv.org/abs/2003.10983

    [7]
    Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. Tensorf: Tensorial radiance fields. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXII. Springer, 333–350.

    [8]
    Sayantan Datta, Derek Nowrouzezahrai, Christoph Schied, and Zhao Dong. 2022. Neural Shadow Mapping. In ACM SIGGRAPH 2022 Conference Proceedings (Vancouver, BC, Canada) (SIGGRAPH ’22). Association for Computing Machinery, New York, NY, USA, Article 8, 9 pages. https://doi.org/10.1145/3528233.3530700

    [9]
    E. Delp and O. Mitchell. 1979. Image Compression Using Block Truncation Coding. IEEE Transactions on Communications 27, 9 (1979), 1335–1342. https://doi.org/10.1109/TCOM.1979.1094560

    [10]
    Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa. 2022. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5501–5510.

    [11]
    Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy Mitra. 2022. ReLU Fields: The Little Non-Linearity That Could. In ACM SIGGRAPH 2022 Conference Proceedings (Vancouver, BC, Canada) (SIGGRAPH ’22). Association for Computing Machinery, New York, NY, USA, Article 27, 9 pages. https://doi.org/10.1145/3528233.3530707

    [12]
    Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoorthi. 2021. NeuMIP: Multi-Resolution Neural Materials. Transactions on Graphics (Proceedings of SIGGRAPH) 40, 4, Article 175 (July 2021), 13 pages.

    [13]
    Tzu-Mao Li. 2022. UCSD CSE 272 Assignment 1: Disney Principled BSDF. https://sayan1an.github.io/disneyLi.html

    [14]
    Zhiting Lin, Zhongzhen Tong, Jin Zhang, Fangming Wang, Tian Xu, Yue Zhao, Xiulong Wu, Chunyu Peng, Wenjuan Lu, Qiang Zhao, and Junning Chen. 2022. A review on SRAM-based computing in-memory: Circuits, functions, and applications. Journal of Semiconductors 43, 3 (mar 2022), 031401. https://doi.org/10.1088/1674-4926/43/3/031401

    [15]
    William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques(SIGGRAPH ’87). Association for Computing Machinery, New York, NY, USA, 163–169. https://doi.org/10.1145/37401.37422

    [16]
    Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. CoRR abs/2003.08934 (2020). arxiv:2003.08934

    [17]
    Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans. Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.1145/3528223.3530127

    [18]
    Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-Time Neural Radiance Caching for Path Tracing. ACM Trans. Graph. 40, 4, Article 36 (jul 2021), 16 pages. https://doi.org/10.1145/3450626.3459812

    [19]
    Nvidia. 2019. Nvidia cooperative matrix. https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_NV_cooperative_matrix.html

    [20]
    J. Nystad, A. Lassen, A. Pomianowski, S. Ellis, and T. Olson. 2012. Adaptive Scalable Texture Compression. In Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on High-Performance Graphics (Paris, France) (EGGH-HPG’12). Eurographics Association, Goslar, DEU, 105–114.

    [21]
    Jeong Joon Park, Peter R. Florence, Julian Straub, Richard A. Newcombe, and Steven Lovegrove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. CoRR abs/1901.05103 (2019). arXiv:1901.05103http://arxiv.org/abs/1901.05103

    [22]
    Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. (2017).

    [23]
    Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields without Neural Networks. In CVPR.

    [24]
    Christoph Schied and Anton Kaplanyan. 2022. Systems and methods for graphics rendering based on machine learning. https://patents.google.com/patent/US11436793B1/en US Patent No. 11436793B1, Filed February 12, 2021, Issued September 6th., 2022.

    [25]
    Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural Networks 61 (jan 2015), 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    [26]
    Jacob Ström and Tomas Akenine-Möller. 2005. IPACKMAN: High-Quality, Low-Complexity Texture Compression for Mobile Phones. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (Los Angeles, California) (HWWS ’05). Association for Computing Machinery, New York, NY, USA, 63–70. https://doi.org/10.1145/1071866.1071877

    [27]
    Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction. In CVPR.

    [28]
    Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Müller, Morgan McGuire, Alec Jacobson, and Sanja Fidler. 2022a. Variable Bitrate Neural Fields. In ACM SIGGRAPH 2022 Conference Proceedings (Vancouver, BC, Canada) (SIGGRAPH ’22). Association for Computing Machinery, New York, NY, USA, Article 41, 9 pages. https://doi.org/10.1145/3528233.3530727

    [29]
    Towaki Takikawa, Andrew Glassner, and Morgan McGuire. 2022b. A Dataset and Explorer for 3D Signed Distance Functions. Journal of Computer Graphics Techniques (JCGT) 11, 2 (27 April 2022), 1–29. http://jcgt.org/published/0011/02/01/

    [30]
    Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. (2021).

    [31]
    Karthik Vaidyanathan, Marco Salvi, Bartlomiej Wronski, Tomas Akenine-Möller, Pontus Ebelin, and Aaron Lefohn. 2023. Random-Access Neural Compression of Material Textures. In Proceedings of SIGGRAPH.

    [32]
    Yin Wang, Hongwei Tang, Yufeng Xie, Xinyu Chen, Shunli Ma, Zhengzong Sun, Qingqing Sun, Lin Chen, Hao Zhu, Jing Wan, Zihan Xu, David Wei Zhang, Peng Zhou, and Wenzhong Bao. 2021. An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nature Communications 12, 1 (07 Jun 2021), 3347. https://doi.org/10.1038/s41467-021-23719-3

    [33]
    Lance Williams. 1983. Pyramidal Parametrics. In Proceedings of the 10th Annual Conference on Computer Graphics and Interactive Techniques (Detroit, Michigan, USA) (SIGGRAPH ’83). Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/800059.801126

    [34]
    Tizian Zeltner, Fabrice Rousselle, Andrea Weidlich, Petrik Clarberg, Jan Novák, Benedikt Bitterli, Alex Evans, Tomáš Davidovič, Simon Kallweit, and Aaron Lefohn. 2023. Real-Time Neural Appearance Models. arxiv:2305.02678 [cs.GR]

    [35]
    Kai Zhang, Fujun Luan, Zhengqi Li, and Noah Snavely. 2022. IRON: Inverse Rendering by Optimizing Neural SDFs and Materials from Photometric Images. In IEEE Conf. Comput. Vis. Pattern Recog.

    [36]
    Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T Freeman, and Jonathan T Barron. 2021. Nerfactor: Neural factorization of shape and reflectance under an unknown illumination. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1–18.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org