“Intrinsic Harmonization for Illumination-Aware Image Compositing” by Careaga, Miangoleh and Aksoy – ACM SIGGRAPH HISTORY ARCHIVES

“Intrinsic Harmonization for Illumination-Aware Image Compositing” by Careaga, Miangoleh and Aksoy

  • 2023 SA_Technical_Papers_Careaga_Intrinsic Harmonization for Illumination-Aware Image Compositing

Conference:


Type(s):


Title:

    Intrinsic Harmonization for Illumination-Aware Image Compositing

Session/Category Title:   Humans & Characters


Presenter(s)/Author(s):



Abstract:


    Despite significant advancements in network-based image harmonization techniques, there still exists a domain gap between training pairs and real-world composites encountered during inference. Most existing methods are trained to reverse global edits made on segmented image regions, which fail to accurately capture the lighting inconsistencies between the foreground and background commonly found in composited images. In this work, we introduce a self-supervised illumination harmonization approach formulated in the intrinsic image domain. First, we estimate a simple global lighting model from mid-level vision representations to generate a rough shading for the foreground region. A network then refines this inferred shading to generate a harmonious re-shading that aligns with the background scene. In order to match the color appearance of the foreground and background, we utilize ideas from prior harmonization approaches to perform global image edits in the albedo domain. To validate the effectiveness of our approach, we present results on challenging real-world composites and conduct a user study to objectively measure the enhanced realism achieved compared to state-of-the-art harmonization methods.

References:


    [1]
    Zhongyun Bao, Chengjiang Long, Gang Fu, Daquan Liu, Yuanzhen Li, Jiaming Wu, and Chunxia Xiao. 2022. Deep Image-based Illumination Harmonization. In Proc. CVPR.

    [2]
    Anand Bhattad and David A. Forsyth. 2022. Cut-and-Paste Object Insertion by Enabling Deep Image Prior for Reshading. Proc. 3DV (2022).

    [3]
    Ralph Allan Bradley and Milton E Terry. 1952. Rank Aanalysis of Incomplete Block Designs: I. The Method of Paired Comparisons. Biometrika 39, 3/4 (1952), 324–345.

    [4]
    Chris Careaga and Yağız Aksoy. 2023. Intrinsic Image Decomposition via Ordinal Shading. SFU Tech. Rep. (2023).

    [5]
    Wenyan Cong, Xinhao Tao, Li Niu, Jing Liang, Xuesong Gao, Qihao Sun, and Liqing Zhang. 2022. High-resolution image harmonization via collaborative dual transformations. In Proc. CVPR.

    [6]
    Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling, Weiyuan Li, and Liqing Zhang. 2020. DoveNet: Deep Image Harmonization via Domain Verification. In Proc. CVPR.

    [7]
    Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir Zamir. 2021. Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets From 3D Scans. In Proc. ICCV.

    [8]
    Mathieu Garon, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr, and Jean-Francois Lalonde. 2019. Fast Spatially-Varying Indoor Lighting Estimation. In Proc. CVPR.

    [9]
    David Griffiths, Tobias Ritschel, and Julien Philip. 2022. OutCast: Single Image Relighting with Cast Shadows. Comput. Graph. Forum (2022).

    [10]
    Zonghui Guo, Zhaorui Gu, Bing Zheng, Junyu Dong, and Haiyong Zheng. 2022. Transformer for Image Harmonization and Beyond. IEEE Trans. Pattern Anal. Mach. Intell. (2022).

    [11]
    Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, and Bing Zheng. 2021. Intrinsic Image Harmonization. In Proc. CVPR.

    [12]
    Zhongyun Hu, Ntumba Elie Nsampi, Xue Wang, and Qing Wang. 2021. NeurSF: Neural Shading Field for Image Harmonization. arxiv:2112.01314 [cs.CV]

    [13]
    Kevin Karsch, Varsha Hedau, David Forsyth, and Derek Hoiem. 2011. Rendering Synthetic Objects into Legacy Photographs. ACM Trans. Graph. 30, 6 (2011).

    [14]
    Kevin Karsch, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr, Hailin Jin, Rafael Fonte, Michael Sittig, and David Forsyth. 2014. Automatic Scene Inference for 3D Object Compositing. ACM Trans. Graph. 33, 3 (2014).

    [15]
    Zhanghan Ke, Chunyi Sun, Lei Zhu, Ke Xu, and Rynson W.H. Lau. 2022. Harmonizer: Learning to Perform White-Box Image and Video Harmonization. In Proc. ECCV.

    [16]
    Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. Proc. ICLR.

    [17]
    Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. 2023. Segment Anything. (2023). arxiv:2304.02643 [cs.CV]

    [18]
    Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chandraker. 2020. Inverse rendering for complex indoor scenes: Shape, spatially-varying lighting and SVBRDF from a single image. In Proc. CVPR.

    [19]
    Zhengqin Li, Jia Shi, Sai Bi, Rui Zhu, Kalyan Sunkavalli, Miloš Hašan, Zexiang Xu, Ravi Ramamoorthi, and Manmohan Chandraker. 2022. Physically-Based Editing of Indoor Scene Lighting from a Single Image. In Proc. ECCV.

    [20]
    Zhengqi Li and Noah Snavely. 2018. MegaDepth: Learning Single-View Depth Prediction from Internet Photos. In Proc. CVPR.

    [21]
    Zicheng Liao, Kevin Karsch, Hongyi Zhang, and David Forsyth. 2019. An Approximate Shading Model with Detail Decomposition for Object Relighting. Int. J. Comput. Vision 127 (2019).

    [22]
    G. Lin, A. Milan, C. Shen, and I. Reid. 2017. RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation. In Proc. CVPR.

    [23]
    Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft COCO: Common Objects in Context. In Proc. ECCV.

    [24]
    Jorge Lopez-Moreno, Sunil Hadap, Erik Reinhard, and Diego Gutierrez. 2010. Compositing Images through Light Source Detection. Computers & Graphics 34, 6 (2010), 698–707.

    [25]
    S. Mahdi H. Miangoleh, Zoya Bylinskii, Eric Kee, Eli Shechtman, and Yağız Aksoy. 2023. Realistic Saliency Guided Image Enhancement. Proc. CVPR.

    [26]
    S. Mahdi H. Miangoleh, Sebastian Dille, Long Mai, Sylvain Paris, and Yağız Aksoy. 2021. Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging. In Proc. CVPR.

    [27]
    Lukas Murmann, Michael Gharbi, Miika Aittala, and Fredo Durand. 2019. A Multi-Illumination Dataset of Indoor Object Appearance. In Proc. ICCV.

    [28]
    Baptiste Nicolet, Julien Philip, and George Drettakis. 2020. Repurposing a Relighting Network for Realistic Compositions of Captured Scenes. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games.

    [29]
    Rohit Pandey, Sergio Orts-Escolano, Chloe LeGendre, Christian Haene, Sofien Bouaziz, Christoph Rhemann, Paul Debevec, and Sean Fanello. 2021. Total Relighting: Learning to Relight Portraits for Background Replacement. ACM Trans. Graph. (2021).

    [30]
    F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung. 2016. A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation. In Proc. CVPR.

    [31]
    Julien Philip, Michaël Gharbi, Tinghui Zhou, Alexei A. Efros, and George Drettakis. 2019. Multi-View Relighting Using a Geometry-Aware Network. ACM Trans. Graph. 38, 4 (2019).

    [32]
    Julien Philip, Sébastien Morgenthaler, Michaël Gharbi, and George Drettakis. 2021. Free-viewpoint Indoor Neural Relighting from Multi-view Stereo. ACM Trans. Graph. (2021).

    [33]
    René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. 2020. Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer. IEEE Trans. Pattern Anal. Mach. Intell. (2020).

    [34]
    Ke Wang, Michaël Gharbi, He Zhang, Zhihao Xia, and Eli Shechtman. 2023. Semi-supervised Parametric Real-world Image Harmonization. In Proc. CVPR.

    [35]
    Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017. Aggregated Residual Transformations for Deep Neural Networks. In Proc. CVPR.

    [36]
    Ben Xue, Shenghui Ran, Quan Chen, Rongfei Jia, Binqiang Zhao, and Binqiang Zhao. 2022. DCCF: Deep Comprehensible Color Filter Learning Framework for High-Resolution Image Harmonization. In Proc. ECCV.

    [37]
    Yu-Ying Yeh, Koki Nagano, Sameh Khamis, Jan Kautz, Ming-Yu Liu, and Ting-Chun Wang. 2022. Learning to Relight Portrait Images via a Virtual Light Stage and Synthetic-to-Real Adaptation. ACM Trans. Graph. (2022).

    [38]
    Jinsong Zhang, Kalyan Sunkavalli, Yannick Hold-Geoffroy, Sunil Hadap, Jonathan Eisenmann, and Jean-François Lalonde. 2019. All-Weather Deep Outdoor Lighting Estimation. In Proc. CVPR.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org