“A Physically-inspired Approach to the Simulation of Plant Wilting” by Maggioli, Klein, Hädrich, Rodolà, Pałubicki, et al. …
Conference:
Type(s):
Title:
- A Physically-inspired Approach to the Simulation of Plant Wilting
Session/Category Title: Simulation and Animation of Natural Phenomena
Presenter(s)/Author(s):
Abstract:
Plants are among the most complex objects to be modeled in computer graphics. While a large body of work is concerned with structural modeling and the dynamic reaction to external forces, our work focuses on the dynamic deformation caused by plant internal wilting processes. To this end, we motivate the simulation of water transport inside the plant which is a key driver of the wilting process. We then map the change of water content in individual plant parts to branch stiffness values and obtain the wilted plant shape through a position based dynamics simulation. We show, that our approach can recreate measured wilting processes and does so with a higher fidelity than approaches ignoring the internal water flow. Realistic plant wilting is not only important in a computer graphics context but can also aid the development of machine learning algorithms in agricultural applications through the generation of synthetic training data.
References:
[1]
F. Anastacio, M. C. Sousa, F. Samavati, and J. A. Jorge. 2006. Modeling Plant Structures Using Concept Sketches(NPAR ’06). ACM, 105–113.
[2]
M. Aono and T. Kunii. 1984. Botanical Tree Image Generation. IEEE Comput. Graph. Appl. 4(5) (1984), 10–34.
[3]
O. Argudo, A. Chica, and C. Andujar. 2016. Single-picture Reconstruction and Rendering of Trees for Plausible Vegetation Synthesis. Comput. Graph. 57, C (2016), 55–67.
[4]
S. Banerjee, D. P. Banerjee, and A. Mukhopadhyay. 2014. Implications of Global Warming on Changing Trends in Crop Productivity – A Review. International Letters of Natural Sciences 11 (02 2014), 16–29.
[5]
R. Barth, J. IJsselmuiden, J. Hemming, and E. V. Henten. 2018. Data synthesis methods for semantic segmentation in agriculture: A Capsicum annuum dataset. Computers and Electronics in Agriculture 144 (2018), 284–296.
[6]
J. Bender, M. Müller, and M. Macklin. 2017. A Survey on Position Based Dynamics, 2017. In Proceedings of the European Association for Computer Graphics: Tutorials(EG ’17). Eurographics Association, Goslar, DEU, Article 6, 31 pages.
[7]
B. Benes, N. Andrysco, and O. Št’ava. 2009. Interactive Modeling of Virtual Ecosystems. In Proceedings of the Fifth Eurographics Conference on Natural Phenomena(NPH’09). Eurographics Association, Goslar, DEU, 9–16.
[8]
D. Bradley, D. Nowrouzezahrai, and P. Beardsley. 2013. Image-based Reconstruction and Synthesis of Dense Foliage. TOG 32, 4, Article 74 (2013), 74:1–74:10 pages.
[9]
F. E. Cellier and E. Kofman. 2006. Continuous system simulation. Springer Science & Business Media.
[10]
Y. Çengel and J. Cimbala. 2018. Fluid Mechanics: Fundamentals and Applications. McGraw-Hill Education.
[11]
H.-Y. Chen, A. Sastry, W. M. van Rees, and E. Vouga. 2018. Physical simulation of environmentally induced thin shell deformation. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–13.
[12]
C. Deul, T. Kugelstadt, M. Weiler, and J. Bender. 2018. Direct position-based solver for stiff rods. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 313–324.
[13]
O. Deussen and B. Lintermann. 2005. Digital design of nature: computer generated plants and organics. Springer Science & Business Media.
[14]
N. Greene. 1991. Detailing Tree Skeleton with Voxel Automata. SIGGRAPH’91, Course Notes on Photorealistic Volume Modeling and Rendering Techniques (1991).
[15]
R. Habel, A. Kusternig, and M. Wimmer. 2009. Physically Guided Animation of Trees. CGF 28, 2 (2009), 523–532.
[16]
T. Hädrich, B. Benes, O. Deussen, and S. Pirk. 2017. Interactive Modeling and Authoring of Climbing Plants. Comput. Graph. Forum 36, 2 (May 2017), 49–61.
[17]
T. Ijiri, S. Owada, and T. Igarashi. 2006. Seamless Integration of Initial Sketching and Subsequent Detail Editing in Flower Modeling. CGF 25, 3 (2006), 617–624.
[18]
S. Jeong, S.-H. Park, and C.-H. Kim. 2013. Simulation of Morphology Changes in Drying Leaves. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 204–215. https://doi.org/10.1111/cgf.12009
[19]
J. T. Kider Jr, S. Raja, and N. I. Badler. 2011. Fruit senescence and decay simulation. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 257–266.
[20]
J. H. Kim and O. Y. Lee-Stadelmann. 1984. Water relations and cell wall elasticity quantities in Phaseolus vulgaris leaves. Journal of experimental botany 35, 6 (1984), 841–858.
[21]
J. Klein, R. E. Waller, S. Pirk, W. Pałubicki, M. Tester, and D. L. Michels. 2023. Synthetic Data at Scale: A Paradigm to Efficiently Leverage Machine Learning in Agriculture. SSRN 4314564 (2023).
[22]
J. Kratt, M. Spicker, A. Guayaquil, M. Fišer, S. Pirk, O. Deussen, J. C. Hart, and B. Benes. 2015. Woodification: User-Controlled Cambial Growth Modeling. CGF 34, 2 (2015), 361–372.
[23]
B. Li, J. Kałużny, J. Klein, D. L. Michels, W. Pałubicki, B. Benes, and S. Pirk. 2021. Learning to Reconstruct Botanical Trees from Single Images. ACM Transaction on Graphics 40, 6, Article 231 (12 2021).
[24]
C. Li, O. Deussen, Y.-Z. Song, P. Willis, and P. Hall. 2011. Modeling and Generating Moving Trees from Video. TOG 30, 6, Article 127 (2011), 127:1–127:12 pages.
[25]
Y. Li, X. Fan, N. J. Mitra, D. Chamovitz, D. Cohen-Or, and B. Chen. 2013. Analyzing Growing Plants from 4D Point Cloud Data. TOG 32, 6, Article 157 (2013).
[26]
B. Lintermann and O. Deussen. 1999. Interactive Modeling of Plants. IEEE Comput. Graph. Appl. 19, 1 (1999), 56–65.
[27]
Y. Liu, J. Guo, B. Benes, O. Deussen, X. Zhang, and H. Huang. 2021. TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction. ACM Transaction on Graphics 40, 6, Article 232 (Dec. 2021), 16 pages.
[28]
Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. 2011. Texture-Lobes for Tree Modelling. In ACM SIGGRAPH 2011 Papers(SIGGRAPH ’11). ACM, Article 53, 10 pages.
[29]
S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. 2012. TreeSketch: Interactive Procedural Modeling of Trees on a Tablet. In Proceedings of the International Symposium on Sketch-Based Interfaces and Modeling(SBIM ’12). 107–120.
[30]
S. Lu, X. Guo, C. Zhao, and C. Li. 2008. Model and animate plant leaf wilting. In International Conference on Technologies for E-Learning and Digital Entertainment, Zhigeng Pan, Xiaopeng Zhang, Abdennour El Rhalibi, Woontack Woo, and Yi Li (Eds.). Springer, Springer Berlin Heidelberg, Berlin, Heidelberg, 728–735.
[31]
S. Lu, C. Zhao, and X. Guo. 2009. Venation skeleton-based modeling plant leaf wilting. International Journal of Computer Games Technology 2009 (2009).
[32]
F. J. Molz. 1981. Models of water transport in the soil-plant system: A review. Water resources research 17, 5 (1981), 1245–1260.
[33]
M. Okabe, S. Owada, and T. Igarashi. 2007. Interactive Design of Botanical Trees Using Freehand Sketches and Example-based Editing. In ACM SIGGRAPH Courses. ACM, Article 26.
[34]
P. E. Oppenheimer. 1986. Real time design and animation of fractal plants and trees. Proc. of SIGGRAPH 20, 4 (1986), 55–64.
[35]
A. Owens, M. Cieslak, J. Hart, R. Classen-Bockhoff, and P. Prusinkiewicz. 2016. Modeling Dense Inflorescences. ACM Trans. Graph. 35, 4, Article 136 (jul 2016), 14 pages.
[36]
W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, and P. Prusinkiewicz. 2009. Self-organizing Tree Models for Image Synthesis. ACM Trans. Graph. 28, 3, Article 58 (2009), 10 pages.
[37]
W. Pałubicki, M. Makowski, W. Gajda, T. Hädrich, D. L. Michels, and S. Pirk. 2022. Ecoclimates: Climate-Response Modeling of Vegetation. ACM Trans. Graph. 41, 4, Article 155 (2022), 19 pages.
[38]
S. Pirk, M. Jarząbek, T. Hädrich, D. L. Michels, and W. Palubicki. 2017. Interactive Wood Combustion for Botanical Tree Models. ACM Trans. Graph. 36, 6, Article 197 (nov 2017), 12 pages.
[39]
S. Pirk, T. Niese, O. Deussen, and B. Neubert. 2012a. Capturing and animating the morphogenesis of polygonal tree models. TOG 31, 6, Article 169 (2012), 169:1–169:10 pages.
[40]
S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. Měch, B. Benes, and O. Deussen. 2012b. Plastic Trees: Interactive Self-adapting Botanical Tree Models. ACM Trans. Graph. 31, 4, Article 50 (July 2012), 10 pages.
[41]
P. Prusinkiewicz and A. Lindenmayer. 1990. The Algorithmic Beauty of Plants. Springer-Verlag New York, Inc.
[42]
E. Quigley, Y. Yu, J. Huang, W. Lin, and R. Fedkiw. 2018. Real-Time Interactive Tree Animation. TVCG 24, 5 (2018), 1717–1727.
[43]
A. Reche-Martinez, I. Martin, and G. Drettakis. 2004. Volumetric reconstruction and interactive rendering of trees from photographs. TOG 23, 3 (2004), 720–727.
[44]
W. T. Reeves and R. Blau. 1985. Approximate and Probabilistic Algorithms for Shading and Rendering Structured Particle Systems. SIGGRAPH Comput. Graph. 19, 3 (July 1985), 313–322.
[45]
L. Ringham, A. Owens, M. Cieslak, L. D. Harder, and P. Prusinkiewicz. 2021. Modeling Flower Pigmentation Patterns. ACM Trans. Graph. 40, 6, Article 233 (dec 2021), 14 pages.
[46]
M. B. V. Roberts. 1986. Biology: a functional approach. Nelson Thornes.
[47]
A. Runions, B. Lane, and P. Prusinkiewicz. 2007. Modeling Trees with a Space Colonization Algorithm. EG Nat. Phenom. (2007), 63–70.
[48]
H. Shao, T. Kugelstadt, T. Hädrich, W. Pałubicki, J. Bender, S. Pirk, and D. L. Michels. 2021. Accurately Solving Rod Dynamics with Graph Learning. In Advances in Neural Information Processing Systems (NeurIPS).
[49]
D. M. Smith and S. J. Allen. 1996. Measurement of sap flow in plant stems. Journal of Experimental Botany 47, 305 (1996). https://www.jstor.org/stable/23695573
[50]
O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes. 2014. Inverse Procedural Modelling of Trees. Computer Graphics Forum (2014), n/a–n/a.
[51]
E. Süli and D. F. Mayers. 2003. An introduction to numerical analysis. Cambridge university press.
[52]
Y. Sun, K. hu, K. Zhang, L. Jiang, and Y. Xu. 2012. Simulation of nitrogen fate for greenhouse cucumber grown under different water and fertilizer management using the EU-RotateN model. Agricultural Water Management 112 (09 2012), 21–32.
[53]
L. Taiz, E. Zeiger, I. M. Møller, A. Murphy, 2015. Plant physiology and development. Number Ed. 6. Sinauer Associates Incorporated.
[54]
P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. 2008. Single Image Tree Modeling. TOG 27, 5, Article 108 (2008), 7 pages.
[55]
Y. Tang, Y. Cao, S. Lu, and X. Guo. 2013. The simulation of 3D plant leaves wilting. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics 25 (11 2013), 1643–1650.
[56]
B. Wang, Y. Zhao, and J. Barbič. 2017. Botanical Materials Based on Biomechanics. ACM Trans. Graph. 36, 4, Article 135 (jul 2017), 13 pages. https://doi.org/10.1145/3072959.3073655
[57]
H. Y. Wang, M. Z. Kang, J. Hua, and X. J. Wang. 2013. Modeling Plant Plasticity from a Biophysical Model: Biomechanics. In Proceedings of the 12th ACM SIGGRAPH Intl. Conf. on VRCAI. ACM, 115–122.
[58]
J. Wither, F. Boudon, M.-P. Cani, and C. Godin. 2009. Structure from silhouettes: a new paradigm for fast sketch-based design of trees. CGF 28, 2 (2009), 541–550.
[59]
S.-K. Wong and K.-C. Chen. 2015. A Procedural Approach to Modelling Virtual Climbing Plants With Tendrils. Comput. Graph. Forum (2015).
[60]
C. Wouter Bac, J. Hemming, B. A. J. van Tuijl, R. Barth, E. Wais, and E. J. van Henten. 2017. Performance Evaluation of a Harvesting Robot for Sweet Pepper. Journal of Field Robotics 34, 6 (2017), 1123–1139.
[61]
Y. Zhao and J. Barbič. 2013. Interactive Authoring of Simulation-ready Plants. ACM Trans. Graph. 32, 4, Article 84 (2013), 12 pages.


