“Path differential-informed stratified MCMC and adaptive forward path sampling” by Zirr and Dachsbacher – ACM SIGGRAPH HISTORY ARCHIVES

“Path differential-informed stratified MCMC and adaptive forward path sampling” by Zirr and Dachsbacher

  • 2020 SA Technical Papers_Zirr_Path differential-informed stratified MCMC and adaptive forward path sampling

Conference:


Type(s):


Title:

    Path differential-informed stratified MCMC and adaptive forward path sampling

Session/Category Title:   Light transport: Sampling


Presenter(s)/Author(s):



Abstract:


    Markov Chain Monte Carlo (MCMC) rendering is extensively studied, yet it remains largely unused in practice. We propose solutions to several practicability issues, opening up path space MCMC to become an adaptive sampling framework around established Monte Carlo (MC) techniques. We address non-uniform image quality by deriving an analytic target function for imagespace sample stratification. The function is based on a novel connection between variance and path differentials, allowing analytic variance estimates for MC samples, with potential uses in other adaptive algorithms outside MCMC. We simplify these estimates down to simple expressions using only quantities known in any MC renderer. We also address the issue that most existing MCMC renderers rely on bi-directional path tracing and reciprocal transport, which can be too costly and/or too complex in practice. Instead, we apply our theoretical framework to optimize an adaptive MCMC algorithm that only uses forward path construction. Notably, we construct our algorithm by adapting (with minimal changes) a full-featured path tracer into a single-path state space Markov Chain, bridging another gap between MCMC and existing MC techniques.

References:


    1. Sheldon Axler. 2020. Measure, Integration & Real Analysis. Springer Nature, page 197.Google Scholar
    2. Kavita Bala, Julie Dorsey, and Seth Teller. 1999. Radiance interpolants for accelerated bounded-error ray tracing. ACM Transactions on Graphics 18, 3 (1999), 213–256.Google ScholarDigital Library
    3. Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Fredo Durand. 2013. 5D Covariance Tracing for Efficient Defocus and Motion Blur. ACM Transactions on Graphics 32, 3 (2013), 31:1–31:18.Google ScholarDigital Library
    4. Laurent Belcour, Ling-Qi Yan, Ravi Ramamoorthi, and Derek Nowrouzezahrai. 2017. Antialiasing complex global illumination effects in path-space. ACM Transactions on Graphics 36, 1 (2017), 9:1–9:13.Google ScholarDigital Library
    5. Benedikt Bitterli. 2015. Informed Choices in Primary Sample Space. M.Sc. Thesis, ETH.Google Scholar
    6. Benedikt Bitterli, Wenzel Jakob, Jan Novák, and Wojciech Jarosz. 2017. Reversible Jump Metropolis Light Transport Using Inverse Mappings. ACM TOG 37, 1 (2017), 1:1ff.Google Scholar
    7. Benedikt Bitterli and Wojciech Jarosz. 2019. Selectively Metropolised Monte Carlo light transport simulation. ACM Trans. Graph. 38, 6, Article 153 (2019).Google ScholarDigital Library
    8. Min-Te Chao. 1982. A general purpose unequal probability sampling plan. Biometrika 69, 3 (1982), 653–656.Google ScholarCross Ref
    9. Per Christensen, Julian Fong, Jonathan Shade, Wayne Wooten, Brenden Schubert, Andrew Kensler, Stephen Friedman, Charlie Kilpatrick, Cliff Ramshaw, Marc Bannister, et al. 2018. RenderMan: An Advanced Path-Tracing Architecture for Movie Rendering. ACM Transactions on Graphics 37, 3 (2018), 30:1–30:21.Google ScholarDigital Library
    10. David Cline, Justin Talbot, and Parris K. Egbert. 2005. Energy Redistribution Path Tracing. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3 (2005), 1186–1195.Google ScholarDigital Library
    11. Radu V. Craiu and Christiane Lemieux. 2007. Acceleration of the Multiple-Try Metropolis algorithm using antithetic and stratified sampling. Statistics and Computing 17, 2 (2007), 109–120.Google ScholarDigital Library
    12. Christopher DeCoro, Tim Weyrich, and Szymon Rusinkiewicz. 2010. Density-based Outlier Rejection in Monte Carlo Rendering. Computer Graphics Forum (Proc. Pacific Graphics) 29, 7 (Sept. 2010), 2119–2125.Google Scholar
    13. Oskar Elek, Pablo Bauszat, Tobias Ritschel, Marcus Magnor, and Hans-Peter Seidel. 2014. Spectral Ray Differentials. Computer Graphics Forum 33, 4 (2014), 113–122.Google ScholarDigital Library
    14. Luca Fascione, Johannes Hanika, Mark Leone, Marc Droske, Jorge Schwarzhaupt, Tomáš Davidovič, Andrea Weidlich, and Johannes Meng. 2018. Manuka: A Batch-Shading Architecture for Spectral Path Tracing in Movie Production. ACM Transactions on Graphics 37, 3 (2018), 31:1–31:18.Google ScholarDigital Library
    15. Charles J. Geyer. 1992. Practical Markov Chain Monte Carlo. Statist. Sci. 7, 4 (1992), 473–483.Google ScholarCross Ref
    16. Charles J. Geyer. 2003. The Metropolis-Hastings-Green algorithm. http://www.stat.umn.edu/geyer/f05/8931/bmhg.pdfGoogle Scholar
    17. Peter J. Green. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 4 (1995), 711–732.Google ScholarCross Ref
    18. Peter J Green. 2003. Trans-dimensional markov chain monte carlo. Oxford Statistical Science Series (2003), 179–198.Google Scholar
    19. Adrien Gruson, Mickaël Ribardière, Martin Šik, Jiří Vorba, Rémi Cozot, Kadi Bouatouch, and Jaroslav Křivánek. 2016. A Spatial Target Function for Metropolis Photon Tracing. ACM Transactions on Graphics 36, 4 (2016), 4:1–4:13.Google Scholar
    20. Adrien Gruson, Rex West, and Toshiya Hachisuka. 2020. Stratified Markov Chain Monte Carlo Light Transport. Computer Graphics Forum 39, 2 (2020), 351–362.Google ScholarCross Ref
    21. Toshiya Hachisuka and Henrik Wann Jensen. 2011. Robust Adaptive Photon Tracing Using Photon Path Visibility. ACM Trans. Graph. 30, 5 (2011), 114:1–114:11.Google ScholarDigital Library
    22. Toshiya Hachisuka, Anton S. Kaplanyan, and Carsten Dachsbacher. 2014. Multiplexed Metropolis light transport. ACM Trans. Graph. 33, 4 (2014), 100:1–100:10.Google ScholarDigital Library
    23. Johannes Hanika, Anton Kaplanyan, and Carsten Dachsbacher. 2015. Improved Half Vector Space Light Transport. Computer Graphics Forum 34, 4 (2015), 65–74.Google ScholarDigital Library
    24. Jared Hoberock and John C Hart. 2010. Arbitrary importance functions for Metropolis light transport. In Computer Graphics Forum, Vol. 29. 1993–2003.Google ScholarCross Ref
    25. Wenzel Jakob. 2010. Mitsuba Renderer. http://www.mitsuba-renderer.orgGoogle Scholar
    26. Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: a Markov chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4 (2012), 58:1–58:13.Google ScholarDigital Library
    27. Anton S Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. The natural-constraint representation of the path space for efficient light transport simulation. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4 (2014), 102:1–102:13.Google ScholarDigital Library
    28. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A simple and robust mutation strategy for the Metropolis light transport algorithm. Computer Graphics Forum 21, 3 (2002), 531–540.Google ScholarCross Ref
    29. Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo Aila. 2013. Gradient-domain Metropolis light transport. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4 (2013), 95:1–95:12.Google ScholarDigital Library
    30. Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable Monte Carlo Ray Tracing through Edge Sampling. ACM TOG 37, 6 (2018), 222:1ff.Google Scholar
    31. Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo Durand. 2015. Anisotropic Gaussian mutations for Metropolis light transport through Hessian-Hamiltonian dynamics. ACM Transactions on Graphics 34, 6, Article 209 (2015).Google ScholarDigital Library
    32. Yufei Li, Yang Liu, and Wenping Wang. 2014. Planar hexagonal meshing for architecture. IEEE Transactions on Visualization and Computer Graphics 21, 1 (2014), 95–106.Google ScholarCross Ref
    33. Jun S. Liu, Faming Liang, and Wing Hung Wong. 2000. The Multiple-Try method and local optimization in Metropolis sampling. J. Amer. Statist. Assoc. 95, 449 (2000), 121–134.Google ScholarCross Ref
    34. Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2020. Langevin Monte Carlo Rendering with Gradient-based Adaptation. ACM TOG 39, 4 (2020), 140:1ff.Google Scholar
    35. Luca Martino and Francisco Louzada. 2017. Issues in the Multiple Try Metropolis mixing. Computational Statistics 32, 1 (2017), 239–252.Google ScholarDigital Library
    36. Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. Computer Graphics Forum 36, 4 (2017), 91–100.Google ScholarDigital Library
    37. Hisanari Otsu, Johannes Hanika, Toshiya Hachisuka, and Carsten Dachsbacher. 2018. Geometry-Aware Metropolis Light Transport. ACM Trans. Graph. (Proc. SIGGRAPH) 37, 6 (2018), 278:1–278:11.Google Scholar
    38. Hisanari Otsu, Anton S Kaplanyan, Johannes Hanika, Carsten Dachsbacher, and Toshiya Hachisuka. 2017. Fusing state spaces for markov chain Monte Carlo rendering. ACM Transactions on Graphics 36, 4 (2017), 74:1–74:10.Google ScholarDigital Library
    39. Silvia Pandolfi, Francesco Bartolucci, and Nial Friel. 2010. A generalization of the Multiple-Try Metropolis algorithm for Bayesian estimation and model selection. In Proc. of International Conference on Artificial Intelligence and Statistics. 581–588.Google Scholar
    40. Jacopo Pantaleoni. 2017. Charted Metropolis Light Transport. ACM Transactions on Graphics 36, 4, Article 75 (July 2017).Google ScholarDigital Library
    41. Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive Rendering with Non-Local Means Filtering. ACM Trans. Graph. 31, 6, Article 195 (Nov. 2012).Google ScholarDigital Library
    42. Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient Estimation for Real-Time Adaptive Temporal Filtering. Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (2018), 24:1–24:16.Google ScholarDigital Library
    43. Jorge Schwarzhaupt, Henrik Wann Jensen, and Wojciech Jarosz. 2012. Practical Hessian-based error control for irradiance caching. ACM Trans. Graph. 31, 6 (2012), 193:1ff.Google ScholarDigital Library
    44. Benjamin Segovia, Jean-Claude Iehl, and Bernard Péroche. 2007a. Coherent Metropolis light transport with Multiple-Try mutations. In LIRIS Technical Report, 2007.Google Scholar
    45. Benjamin Segovia, Jean Claude Iehl, and Bernard Péroche. 2007b. Metropolis Instant Radiosity. In Computer Graphics Forum, Vol. 26. 425–434.Google ScholarCross Ref
    46. Mikio Shinya, Tomoichi Takahashi, and Seiichiro Naito. 1987. Principles and Applications of Pencil Tracing. In Computer Graphics (Proc. SIGGRAPH). 45–54.Google Scholar
    47. Florian Simon, Alisa Jung, Johannes Hanika, and Carsten Dachsbacher. 2018. Selective guided sampling with complete light transport paths. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 6, Article 223 (Dec. 2018).Google Scholar
    48. Frank Suykens and Yves D. Willems. 2001. Path differentials and applications. In Proc. Eurographics Symposium on Rendering. 257–268.Google Scholar
    49. László Szirmay-Kalos and László Szécsi. 2017. Improved stratification for metropolis light transport. Computers & Graphics 68 (2017), 11–20.Google ScholarDigital Library
    50. Eric Veach. 1998. Robust Monte Carlo methods for light transport simulation. Ph.D. Dissertation. Stanford University. AAI9837162.Google ScholarDigital Library
    51. Eric Veach and Leonidas J. Guibas. 1995. Optimally combining sampling techniques for Monte Carlo rendering. Proc. ACM SIGGRAPH (1995), 419–428.Google Scholar
    52. Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. Proc. ACM SIGGRAPH (1997), 65–76.Google Scholar
    53. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line learning of parametric mixture models for light transport simulation. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4 (2014), 101:1–101:11.Google ScholarDigital Library
    54. Martin Šik and Jaroslav Křivánek. 2018. Survey of Markov Chain Monte Carlo Methods in Light Transport Simulation. IEEE Transactions on Visualization and Computer Graphics 26 (2018), 1821–1840.Google ScholarCross Ref
    55. Martin Šik, Hisanari Otsu, Toshiya Hachisuka, and Jaroslav Křivánek. 2016. Robust Light Transport Simulation via Metropolised Bidirectional Estimators. ACM Transactions on Graphics 35, 6 (2016), 245:1–245:12.Google ScholarDigital Library
    56. Tobias Zirr, Johannes Hanika, and Carsten Dachsbacher. 2018. Re-Weighting Firefly Samples for Improved Finite-Sample Monte Carlo Estimates. In Computer Graphics Forum, Vol. 37. 410–421.Google ScholarCross Ref
    57. Károly Zsolnai and László Szirmay-Kalos. 2013. Automatic Parameter Control for Metropolis light transport. In Eurographics Short Papers. 53–56.Google Scholar


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org